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Abstract: Lead (Pb) exposure can delay children’s mental development and cause behavioral disorders
and IQ deficits. With children spending a significant portion of their time at schools, it is critical
to investigate the lead concentration in schools’ drinking water to prevent children’s exposure.
The objectives of this work were to predict students’ geometric mean (GM) blood lead levels (BLLs),
the fractions of at-risk students (those with BLLs > 5 µg/dL), and the total number of at-risk students
in one Tennessee school district. School drinking water lead concentration data collected in 2019 were
input into the Integrated Exposure Uptake Biokinetic (IEUBK) model and the Bowers’ model to predict
BLLs for elementary school students and secondary school students, respectively. Sensitivity analyses
were conducted for both models. Drinking water concentrations were qualitatively compared with
data collected in 2017. Two scenarios were evaluated for each model to provide upper and median
estimates. The weighted GM BLL upper and median estimates for elementary school students were
2.35 µg/dL and 0.99 µg/dL, respectively. This equated to an upper estimate of 1300 elementary school
students (5.8%) and a median estimate of 140 elementary school students (0.6%) being at risk of
elevated BLLs. Similarly, the weighted GM BLL upper and median estimates for secondary school
students were 2.99 µg/dL and 1.53 µg/dL, respectively, and equated to an upper estimate of 6900
secondary school students (13.6%) and a median estimate of 300 secondary school students (0.6%)
being at risk of elevated BLLs. Drinking water remediation efforts are recommended for schools
exhibiting water lead concentrations greater than 15 µg/L. Site-specific soil lead concentration data are
recommended since the IEUBK was deemed sensitive to soil lead concentrations. For this reason, soil
lead remediation may have a greater impact on lowering children’s BLLs than drinking water lead
remediation. Remediation efforts are especially vital at elementary schools to reduce the population’s
baseline BLL and thus the BLL projected by Bowers’ model.
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1. Introduction

Lead (Pb) exposure is a global concern due to the metal’s acute and chronic health impacts. This is
especially true for children because they are exposed to high concentrations of lead due to their habits,
and they absorb high quantities of lead as their bodies continue to grow [1–7]. Lead absorption
can delay children’s mental development and can cause behavioral disorders, IQ deficits, anemia,
renal dysfunction, impaired hearing, and abnormal postnatal growth [8,9]. As previous authors
have indicated, schools’ drinking water may be a significant source of lead exposure since children
spend a significant portion of their time at schools [10,11]. Lead in schools’ drinking water originates
from the corrosion of lead-bearing plumbing materials such as lead service lines, brass valves and

Water 2020, 12, 1826; doi:10.3390/w12061826 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-7887-6430
http://dx.doi.org/10.3390/w12061826
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/6/1826?type=check_update&version=2


Water 2020, 12, 1826 2 of 20

fittings, galvanized iron, lead-tin solder, and faucet fixtures [12–17]. The United States Environmental
Protection Agency (US EPA) action level for lead concentration in water is 15µg/L [18], but the American
Association of Pediatrics recommends that children should not be exposed to lead in drinking water at
levels greater than 1.0 µg/L [19]. It is critical to investigate the lead concentration in schools’ drinking
water because the children may develop elevated blood lead levels (BLLs) from consuming water with
a high lead concentration [20]. Blood lead levels exceeding 10 µg/dL have been defined as elevated by
the U.S. Center of Disease Control and Prevention (CDC) [7], but negative health effects in children
have been reported at BLLs less than this threshold [21,22]. Thus, by determining the water lead
concentration and understanding its effects on children’s BLLs, appropriate remediation methods can
be implemented where necessary to lower children’s lead exposure.

The Integrated Exposure Uptake Biokinetic (IEUBK) model was developed by US EPA and is
applicable for children aged 6-months-old to 84-months-old [20]. Given the water lead concentration,
lead concentrations from other media (soil, dust, air, food, paint, etc.), typical exposure conditions, and
pharmacokinetic parameters, the IEUBK model predicts children’s BLLs [20]. This model has been
used extensively to estimate geometric mean BLLs [11,23–27], fractions of populations that are at risk
of elevated BLLs [24,27,28], and probabilities of individuals having elevated BLLs [24,27,28]. Although
many studies have used the IEUBK model to predict BLLs resulting from exposure to lead in several
media, some authors have used it specifically to model BLLs resulting predominately from lead in
school’s drinking water [25,27]. Thus, by using the IEUBK model to predict students’ BLLs before
and after implementing a water remediation method, the model can indicate the effectiveness of an
elementary school’s remediation practices [27].

Because significant lifestyle and biokinetic differences exist between young children and adults,
the IEUBK model is not applicable to people over 84-months-old. Bowers’ model was developed by
Bowers, et al. [7] to predict the BLLs of adults. Like the IEUBK model, Bowers’ model draws upon
environmental lead concentrations (in soil, dust, air, food, water, etc.), exposure/ingestion rates, and
pharmacokinetic absorption values to estimate a person’s BLL. However, unlike the IEUBK model,
Bowers’ model requires a biokinetic slope factor and a baseline BLL. The biokinetic slope factor (often
assumed to be between 0.3 and 0.4 µg/dL per µg/day) relates a body’s lead absorption rate to its
current lead concentration while the baseline BLL is the preexisting BLL (before the lead exposure
being studied). Although Bowers’ model does not specify an exact age range for use, it is targeted to
model BLLs among people who have not had excessive occupational exposures to lead [7,29] and was
therefore deemed appropriate for the secondary school populations studied herein.

Previous studies have also examined drinking water lead concentrations in childcare facilities.
These studies have determined the necessary factors to consider during sampling, analysis, and
when providing recommendations. Relevant factors include testing all potential drinking-water and
cooking-water fixtures [30], accounting for extreme lead concentrations at specific fixtures [31], and
prioritizing remediation efforts [32]. By following these guidelines when coupling recent sampling
data with the IEUBK and Bowers’ models, the objectives of this work were to (1) model students’
geometric mean blood lead levels at each school, (2) predict the fractions of at-risk students (those
with BLLs > 5 µg/dL) at each school, and (3) estimate the total number of at-risk students in the school
district. An additional objective was to perform sensitivity analyses on each model to determine
the most influential parameters for the population studied. The findings of this study will enhance
the public’s awareness of the consequences of elevated lead levels in schools’ drinking water and
potentially encourage action among school officials, health agencies, and other stake holders.

2. Methods

2.1. Data Collection

Local consulting firms collected water samples at multiple schools within the school district in
accordance with US EPA regulations [33]. Samples were collected from kitchen sinks, water fountains,
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faucets, coolers, bathroom sinks, and icemakers. In 2017, first draw samples were collected on school
days before students arrived and in 2019 the samples were collected during fall break when the
buildings were vacant. A total of 583 and 3428 water samples were collected in 2017 and 2019,
respectively. Lead quantification was conducted by a certified lab and reported to the school district.
The detection limit was 0.5 µg/L for all tested samples. The drinking water lead concentration data
were obtained from the school district. Each school’s population was determined via the school’s
website or via the 501(c)(3) not-for-profit organization, Great Schools [34]. See Supplemental Table S1
in the supplemental file for a summary of the school population data.

2.2. Risk Modeling

The IEUBK model (Windows version 1.1 Build 11) was downloaded from US EPA website [35]
and the advanced user interface was employed for analysis. The model’s default values for dietary
lead intake (2.05 µg/day and 2.22 µg/day for 5- and 6-year-olds, respectively), water consumption
(0.58 L/day and 0.59 L/day for 5- and 6-year-olds, respectively), and soil ingestion rates (0.090 g/day
and 0.085 g/day for 5- and 6-year-olds, respectively) were used [36]. These ingestion parameters and
the biokinetic absorption equations within the model were not altered since they have been developed
using diverse populations of human children and provide a generally realistic basis for quantitative
modeling [20]. However, site-specific lead concentrations were employed for the region’s soil and each
school’s water.

For Bowers’ model, the recommended default biokinetic parameters were used for absorption
and ingestion (given in Section 2.2.2) and site-specific values were used for the lead concentrations in
the soil and water. The biokinetic slope factor [7] was set to the default value (0.375 µg/dL per µg/day).
Since the secondary schools and the elementary schools in this study were part of the same school
district, the secondary school students had most likely been exposed to the lead concentrations that the
study’s elementary school students were experiencing. Therefore, the geometric mean BLLs predicted
from the IEUBK model were imported into Bowers’ model as the baseline BLLs. Like the IEUBK
model, Bowers’ model yielded the geometric mean BLL for the population and the fraction of the
population considered at risk of having an elevated BLL. Both the IEUBK and Bowers’ models yielded
the geometric mean BLL for the population and the fraction of the population considered to be at risk
of having an elevated BLL by assuming a lognormal distribution and a geometric standard deviation
of 1.6 [37].

2.2.1. IEUBK Model

Student Population: The elementary school analysis applied to students who were 60- to
84-months-old within the school district’s 99 elementary schools tested in 2019. This age range was
selected by assuming that children under 60-months-old were not present in the elementary schools.
The IEUBK model is not applicable to children over 84-months-old. Modeling of BLLs and at-risk
fractions were conducted for data collected in 2019. Results were qualitatively compared to data
obtained from the district’s elementary schools in 2017.

Lead Concentration in Air: Although no significant differences in model outputs were obtained
when using the model’s default value for the lead concentration in air (0.10 µg/m3) versus the mandated
upper limit for the lead concentration in air (0.15 µg/m3) [38], the latter was employed to ensure a
conservative model estimate.

Lead Concentration in Water: The nominal school drinking water first draw lead concentration
was the average of all the first draw samples taken at a school. The equations relating this average
school drinking water concentration to the overall drinking water lead concentration to which the
students were exposed are depicted below. Samples reporting water lead concentrations less than
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0.5 µg/L were assumed to be 0.25 µg/L. The average first draw drinking water lead concentration was
defined via Equation (1) as:

[Pb]H2O (FD School) ≡
1
n

n∑
i=1

(
[Pb]H2O (FD School)

)
i

(1)

where [Pb]H2O (FD School) was the average first draw drinking water lead concentration at a school in
µg/L and [Pb]H2O (FD School) was the individual sample first draw drinking water lead concentration in
µg/L. Similar to previous authors [25,27], it was assumed that half of a student’s daily water intake
was consumed at home and half was consumed at school. By extension, half of the student’s first draw
water was consumed at home while half of the first draw water was consumed at school. The lead
concentration in the first draw water at the students’ homes was assumed to be 8.63 µg/L (the region’s
90th percentile value) [39]. The overall first draw water lead concentration was thus calculated as:

[Pb]H2O (FD Combined) = (0.5× 8.63) +
(
0.5× [Pb]H2O (FD School)

)
(2)

where [Pb]H2O (FD Combined) was the combined average first draw drinking water lead concentration to
which a student was exposed in µg/L. It was assumed that the lead concentration of flushed water
was 25% of the lead concentration in the first draw water [40]. Thus, the flushed concentration was
calculated as:

[Pb]H2O (Flushed Combined) = 0.25×
(
[Pb]H2O (FD Combined)

)
(3)

where [Pb]H2O (Flushed Combined) was the combined average flushed drinking water lead concentration to
which a student was exposed in µg/L. It was also assumed that 30% of all water consumed was from
first draw systems and 70% was from flushed systems [41]. Therefore, the lead sourced from drinking
water was calculated as the weighted average:

[Pb]H2O (Overall) = 0.3×
(
[Pb]H2O (FD Combined)

)
+ 0.7×

(
[Pb]H2O (Flushed Combined)

)
(4)

where [Pb]H2O (Overall) was the overall average drinking water lead concentration to which a student
was exposed in µg/L. Substituting Equations (2), and (3) into Equation (4) and simplifying yielded:

[Pb]H2O (Overall) = 0.2375×
(
[Pb]H2O (FD School)

)
+ 2.05 (5)

Equation (5) depicts the overall drinking water lead concentration in µg/L as a function of the
average first draw school drinking water lead concentration. Substituting the average first draw
drinking water school lead concentration into Equation (5) yielded the concentration of lead to which
the students were exposed from drinking water at home and at school.

Lead Concentration in Soil/Dust: The soil lead concentration parameters are the most sensitive
in the model [20,42], and thus have the greatest effect on the estimated BLL. As recommended by
US EPA, site-specific lead concentrations are required for accurate model results [20]. Although previous
authors [27] have used the IEUBK model’s default value for soil lead concentration (200 µg/g), this study
employed site-specific values for this parameter. Therefore, whereas the previous authors developed a
general point estimate, this study evaluated two possible soil exposure scenarios to model an at-risk
percentage range that was applicable to the geographic area of interest. Scenario A employed the
region’s 90th percentile soil lead concentration (260 µg/g) [43], while scenario B employed the region’s
median soil lead concentration (52 µg/g) [43]. Although scenario A assumed 100% of students were
exposed to 260 µg/g, 90% of students (by definition) were exposed to a lower concentration. Therefore,
scenario A was interpreted as the probability that a student with a high soil lead exposure would
acquire an elevated BLL when exposed to the school’s drinking water lead conditions. Conversely,
scenario B assumed 100% of students were exposed to 52 µg/g. Since half of the students were exposed
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to a greater concentration and half were exposed to a lower concentration (by definition), scenario B
was interpreted as both (1) the probability that a student with a median soil lead exposure would
acquire an elevated BLL when exposed to the school’s drinking water lead conditions (similar to
the single-student interpretation of scenario A), or (2) the fraction of children in a population who
would be at risk of elevated BLLs when exposed to the school’s drinking water lead conditions [20].
Each interpretation is presented in the discussion below. The indoor dust lead concentration was
assumed to be 15 µg/g above 70% of the outdoor soil lead concentration [20].

Sensitivity Analysis: The model was run for 32 iterations to determine the effects on the geometric
mean BLL on the target population (60- to 84-month-old elementary school students). This consisted
of 4 soil concentrations (20, 52, 200, 260 µg/g) for each of 8 average first draw school drinking water
lead concentrations (0, 2, 5, 10, 15, 25, 40, 60 µg/L).

2.2.2. Bowers’ Model

Student Population: The secondary school analysis applied to middle- and high-school students
in grades 6 through 12 (approximately 11- to 17-years-old) in the school district. As was conducted
for the elementary school students, modeling of BLLs and at-risk fractions was conducted for data
collected in 2019 then qualitatively compared with data from 2017.

Lead Uptake from Air: Bowers’ model calculated the lead uptake from air as the product of the
absorption fraction, the ventilation rate, and the air lead concentration. The recommended default
values of 0.32 and 20 m3/day were used for the absorption fraction and ventilation rate, respectively [7].
The same lead concentration in air was used for Bowers’ model as was used for the IEUBK model:
0.15 µg/m3.

Lead Uptake from Water: Bowers’ model calculated the lead uptake from water as the product of
the absorption fraction, the ingestion rate, and the water lead concentration. The recommended default
values of 0.08 and 2.0 L/day were used for the absorption fraction and ingestion rate, respectively [7].
Equation (5) was used to estimate the lead concentration in drinking water.

Lead Uptake from Soil/Dust: Bowers’ model calculated the lead uptake from soil/dust as the
product of the absorption fraction, the ingestion rate, and the soil/dust lead concentration. The
recommended default values of 0.08 and 0.02 g/day were used for the absorption fraction and ingestion
rate, respectively [7]. As was applied to the IEUBK model, the indoor dust lead concentration was
assumed to be 15 µg/g above 70% of the outdoor soil concentration [20]. It was assumed that 25%
of the students’ time was spent outside (exposed to soil) and 75% of the students’ time was spent
inside (exposed to dust). As was done for the IEUBK model, two scenarios were evaluated. Scenario C
assumed all students were exposed to the region’s 90th percentile soil concentration (260 µg/g) [43]
whereas scenario D assumed all students were exposed to the region’s median soil concentration
(52 µg/g) [43]. Hence, scenario C used the geometric mean derived from scenario A for its baseline BLL
whereas scenario D used the geometric mean derived from scenario B for its baseline BLL.

Sensitivity Analysis: The model was run for 78 iterations to determine the effects on the geometric
mean BLL on the target population (11- to 17-year-old secondary school students). This consisted
of 2 soil concentrations (20, 260 µg/g) for each of 13 average first draw school drinking water lead
concentrations (0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 µg/L) and 3 baseline BLLs (2, 7, 12 µg/dL).

2.2.3. Estimating At-Risk Students

By inputting the lead concentrations from each medium into the IEUBK model, two geometric
mean BLLs were predicted for each elementary school (one for scenario A and one for scenario B).
Likewise, by inputting the environmental lead concentrations with the baseline BLLs, biokinetic slope
factors, and lead uptake rates into Bowers’ model, two geometric mean BLLs were predicted for each
secondary school (one for scenario C and one for scenario D). Coupling each geometric mean with the
assumed geometric standard deviation of 1.6 [37], produced lognormal distributions of the students’
projected BLLs for each scenario at each school. The fraction of each distribution greater than 5 µg/dL
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(the recommended BLL limit for both children and adults [44]) was the percentage of at-risk students
for that scenario. Multiplying this percentage by the number of 5- and 6-year-olds (IEUBK model) or
the number of 11- to 17-year-olds (Bowers’ model) yielded the projected number of at-risk students
for each school. Because the IEUBK model applied to children under 84-months-old, it was assumed
that the IEUBK model applied to approximately 40% of each elementary school’s student population
(grades K-2). Using the known total population of students at each school, the number of children
projected to be at risk was calculated via Equation (6) as:

N(5−6)i = 0.4× Pi × Fi (6)

where N(5−6)i was the number of at-risk 5- and 6-year-olds at school i, Pi was the student population at
school i, and Fi was the fraction of children at school i who were projected to be at risk according to the
IEUBK scenario used.

Conversely, the Bowers model applied to each school’s total student population. Therefore, using
the known total population of students at each school, the total number of secondary school students
projected to be at risk was calculated via Equation (7) as:

N(11−17)i = Pi × Fi (7)

where N(11−17)i was the number of at-risk students at school i, Pi was the student population at school i,
and Fi. was the fraction of students at school i who were projected to be at risk according to the scenario
used. This study expands on the works of previous authors [27] by estimating the total number of
at-risk students. Using the total number, the region’s weighted average geometric mean (considering
varied populations across schools) was estimated for all scenarios.

3. Results

3.1. Investigation of Lead in Schools’ Drinking Water

In 2017, the school district reported 13% of the sampled schools had at least one drinking water
fixture exceeding US EPA action level (15 µg/L). By 2019, this value increased to 25% and these
fixtures were immediately removed from service. In 2019, 90% of the schools had at least one fixture
that exceeded the American Association of Pediatrics’ recommendation (1 µg/L). Of the schools
reporting lead concentrations greater than 1 µg/L, over half were elementary schools (34 of 60 schools
in 2017 and 90 of 145 schools in 2019). The school district’s lead concentration data is summarized
in Table 1. The maximum value (18,800 µg/L) is over 40% greater than the maximum concentration
reported recently in Flint, Michigan (13,200 µg/L in 2015) [31] and over 2.5 times greater than the
maximum value reported in Washington D.C. (7500 µg/L in 2004) [45]. Although the average ages
of the district’s elementary, middle, and high school buildings were all greater than 50-years-old,
the original Lead Contamination and Control Act (LCCA)—issued to help mitigate lead in school
drinking water [46]—had been implemented only 31 years prior to the 2019 sampling. Therefore, it
is reasonable to assume that many of the schools were constructed using materials that have since
been deemed inappropriate for school water distribution. The water sampling in 2019 was conducted
soon after the Tennessee code was amended to require public schools constructed before 1998 to test
their drinking water lead concentrations [47]. After the 2019 sampling, the potable water fixtures with
lead concentrations greater than US EPA action level were immediately removed from service. Thus,
mandatory drinking water lead concentration testing at schools could be very significant in decreasing
or preventing childhood lead exposure.
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Table 1. Lead Concentration ([Pb]) in Water for a School District in Tennessee.

Schools
Elementary Schools Middle Schools High Schools

2017 2019 2017 2019 2017 2019

Schools sampled 39 99 16 25 17 36
Schools with [Pb] > 1 µg/L 34 90 13 21 13 34

Schools with [Pb] > 10 µg/L 7 26 0 5 5 18
Schools with [Pb] > 15 µg/L 5 20 0 5 4 16

Total sampled 270 1923 112 613 118 892
Fixtures with [Pb] > 15 µg/L 26 43 0 14 5 19

Maximum [Pb] (µg/L) 53 18,800 9 140 99 285
Median [Pb] (µg/L) 6 227 3 16 12 30

Range (µg/L) <0.5–53 <0.5–18,800 <0.5–9 <0.5–140 <0.5–99 <0.5–285

3.2. Elementary Schools Assessment

3.2.1. Geometric Mean BLL

As shown in Figure 1, scenario A (using the 90th percentile soil lead concentration) predicted
94% of the elementary schools tested in 2019 (93 schools) to have students with a mean BLL of
approximately 2.5 µg/dL while scenario B (using the median soil lead concentration) predicted 87% of
these schools (86 schools) to have students with a mean BLL of approximately 1.0 µg/dL. Both scenarios
predicted a single elementary school to have students with a geometric mean BLL greater than the
recommended BLL limit of 5 µg/dL. Both distributions have prominent peaks and are skewed to the
right. The prominent peaks indicate that only a few schools had student populations with geometric
means outside of the most-predicted value. However, the positive skew indicates that these few
outlying schools have populations with significantly greater BLLs than most schools. Also, scenario A’s
distribution is shifted significantly to right of scenario B’s distribution. In other words, almost all the
geometric means predicted by scenario A are substantially greater than those predicted by scenario B.
This highlights the importance of employing the appropriate site-specific soil lead concentration into
the IEUBK model. Although previous authors targeted other geographic locations and thus employed
different lead concentrations in both soil and water, the results obtained herein are similar to their
findings. The previous study’s model predicted elementary schools in Seattle to have a typical scenario
geometric mean BLL ranging between 1.6 µg/dL and 2.5 µg/dL and a worst-case scenario geometric
mean BLL ranging between 1.7 µg/dL and 5.0 µg/dL [25]. These values are comparable to this study’s
findings for scenarios B and A, respectively.
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3.2.2. Percentage and Number of At-Risk Students

All but 6 of the 99 tested elementary schools had average first draw drinking water lead
concentrations less than 15 µg/L. Figure 2 depicts the projected fraction of at-risk students as a function
of the school drinking water lead concentration for scenarios A and B. Although both scenarios
indicate that the fraction of at-risk students would increase as the water lead concentration increases,
scenario A projects a more rapid increase and thus a larger at-risk population for equivalent water
lead concentrations. Additionally, scenario A predicts significantly more at-risk students when
water lead concentrations are minimal. These two trends—a more rapid increase and a larger initial
percentage—show how the estimated fraction of at-risk students is highly sensitive to the input soil
lead concentration. The diamond and circle markers on Figure 2 represent the schools where the
readings were taken. The average first draw school drinking water lead concentration is represented
on the horizontal axis and each school’s projected fraction of at-risk students is represented on the
vertical axis. Since its water lead concentration was two orders of magnitude greater than that of the
school with the next highest reading, the outlying school is not depicted on Figure 3. Since it had
an average first draw drinking water lead concentration over 1000 µg/L, the outlier far exceeds the
upper bound of Figure 2’s horizontal axis (60 µg/L). Both scenarios A & B projected nearly 100% of
this outlying school’s 5- and 6-year-olds to be at risk of elevated BLLs. These drinking water lead
concentrations compare well to measurements taken in other studies for other school districts. As other
authors have concluded, a large cluster of schools had minimal lead concentrations in the drinking
water while a few schools had exceptionally high values [27,31].
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The at-risk population distribution is depicted in Figure 3. The figure shows the number of at-risk
5- and 6-year-olds at each school. Scenario B had a sharp peak and thus estimated 98% of schools
had 5 or fewer 5- and 6-year-olds at risk of elevated BLLs. However, scenario A had a positively
skewed wide distribution. Scenario A estimated a plurality of schools (39%) to have approximately
15 students at risk of elevated BLLs and 7% of schools to have over 20 students at risk. Scenarios A and
B place the outlying elementary school (having an average first draw drinking water lead concentration
exceeding 1000 µg/L) in the final column of Figure 3 since nearly 100% of the school’s 5- and 6-year-olds
(approximately 120 students) were projected to be at risk according to both scenarios.
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Figure 3. Distribution of at-risk population for elementary schools.

3.3. Secondary School Assessment

3.3.1. Geometric Mean BLL

As shown in Figure 4, scenario C (using the 90th percentile soil lead concentration) estimated that
81% of the secondary schools tested in 2019 (55 schools) had student populations with a geometric
mean BLL of approximately 3.0 µg/dL and the remaining 19% of these schools (13 schools) had
populations with a geometric mean BLL of approximately 3.5 µg/dL. Scenario D (using the median soil
lead concentration) estimated that all 68 of these schools had a geometric mean BLL of approximately
2.0 µg/dL. Neither scenario predicted any schools having students with a geometric mean greater
than the recommended BLL limit (5 µg/dL). Both scenario distributions have prominent peaks and
no outliers. This indicates that no schools had populations with geometric means far outside of the
most-predicted value. Scenario C’s values are shifted significantly to right of scenario’s D’s values
meaning all the geometric means estimated by scenario C are substantially greater than those estimated
by scenario D. It is detailed in the discussion that this shift resulted from the difference in baseline BLL
input, not the difference in soil lead concentration input (as was the reason for the difference between
the scenario A and B distributions).
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Figure 4. Distribution of BLL geometric means for secondary schools.

3.3.2. Percentage and Number of At-Risk Students

All but one of the 68 secondary schools tested in 2019 had average first draw drinking water
lead concentrations less than 15 µg/L. Figure 5 depicts the projected percentage of at-risk students
as a function of the school drinking water lead concentration for scenarios C and D. Both scenarios
show the fraction of at-risk students increasing as the water lead concentration increases but scenario
C projects a slightly more rapid increase. The majority of the difference between scenarios C and D
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resulted from the large initial difference. At negligible drinking water lead concentrations, scenario
C predicts over 13% of students to be at risk while scenario D predicts less than 1% of students to
be at risk. This difference is mainly attributed to the baseline BLL input in Bowers’ model (obtained
from the IEUBK model), not the soil lead concentration to which secondary students were exposed.
This further emphasizes the need for site-specific lead concentration data to be used in the IEUBK
model and introduces the notion that minimizing BLL concentrations in adult populations is best
achieved by minimizing lead exposure during childhood.
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Figure 5. Fraction of at-risk students vs. water lead concentration at secondary schools.

Considering the number of at-risk 11- to 17-year-old students (N(11−17)i) for each school, the school
at-risk population distribution is depicted in Figure 6. The figure shows the number of at-risk students
at each school. Scenario D had a sharp peak and thus estimated 93% of schools to have approximately
10 students at risk of elevated BLLs. However, scenario C had a nearly uniform distribution with 78%
of the schools having at least 60 students at risk.
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4. Discussion

4.1. Elementary School Assessment

4.1.1. Scenario A

Scenario A projected all schools to have at least 4.8% of the students being at risk of elevated BLLs.
This included schools with minimal lead concentrations in the drinking water. In other words, because
the input soil lead concentration was the region’s 90th percentile value, all schools had at least 1 in
21 students at risk of an elevated BLL. Applying a linear approximation to scenario A in Figure 2, the
fraction of at-risk students increased at a rate of 0.20% per µg/L. Since this rate of increase is relatively
small, schools with low or mid-range water lead concentrations would benefit more from mitigating
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the lead in the soil rather than mitigating the lead in the water. Specifically, for schools with average
first draw water lead concentrations less than the recommended upper limit of 15 µg/L [18], further
reducing the drinking water lead concentration would result in only an incremental reduction of at-risk
students. For these schools, high BLLs among students are most likely attributed to the high soil lead
concentration—not the drinking water lead concentration. However, there were six elementary schools
with average drinking water lead concentrations greater than 15 µg/L. Using scenario A, these schools
had at least 8% of their 5- and 6-year-olds at risk of BLLs above 5 µg/dL. Of these six schools, one had
approximately 100% of its students at risk because its average water lead concentration was greater
than 1000 µg/L. The other five schools ranged from 16 µg/L (8% of students at risk) to 55 µg/L (19%
of students at risk). For these schools, reducing the water lead concentration to below 15 µg/L could
substantially reduce the fraction of at-risk students. A lognormal distribution depicting scenario A is
shown in Figure 7A. Scenario A predicted the weighted geometric mean BLL across all the region’s 5-
and 6-year-olds to be 2.35 µg/dL. This value is depicted by the vertical line in Figure 7A. Approximately
1300 of the estimated 22,300, 5- and 6-year-old students were projected to have BLLs above 5 µg/dL.
The shaded area (5.8% of the total area) in Figure 7A represents this fraction of students. Remediating
the high lead concentration in water at the one outlying school would prevent approximately 120 of
the region’s estimated 22,300 (0.5%) 5- and 6-year-old students from being at risk of elevated BLLs.
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Figure 7. (A)–(D). Probability density functions and geometric means for (A) Scenario A, (B) Scenario B,
(C) Scenario C, (D) Scenario D. The plots represent the distribution of projected BLLs for (A & B)
elementary school students using the IEUBK model and (C & D) secondary school students using
Bowers’ model. Models of scenarios A & C employed the region’s 90th percentile soil lead concentration
whereas models of scenarios B & D used the median soil lead concentration. The vertical line on each
figure depicts the geometric mean of the distribution.

Although these data represent the conditions at each school for the fall of 2019, it should be noted
that 40 of the 99 elementary schools had drinking water samples analyzed for lead during 2017 as well.
Although it is unknown which remediation efforts (if any) were implemented after the 2017 sampling,
33 of the 40 elementary schools exhibited no significant difference in water lead concentration between
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the 2017 data and the 2019 data. Of the remaining 7 schools, 3 exhibited a decrease in water lead
concentration whereas 4 exhibited an increase. Only 1 of these schools had an average water lead
concentration greater than 15 µg/L in 2017 but all 4 of these schools were beyond this recommended
limit in 2019 (although 6 elementary schools had average water lead concentrations greater than 15 µg/L
in 2019, 2 of these were not tested in 2017). This demonstrates the need for continual testing. A school
may have acceptable values at one timepoint, but it might not maintain a low water lead concentration.

The results obtained for scenario A parallel those of other authors. The previous study of Seattle
public schools indicated that approximately 11% of the students attending “typical exposure schools”
(schools having median first-draw drinking water lead concentrations of 6 µg/L) were at risk of elevated
BLLs before remediation and scenario A predicted approximately 7% of these students would be at
risk. Likewise, for students attending a “low exposure school” (having a median first-draw drinking
water lead concentration of 0.5 µg/L), the previous study suggested that approximately 7% of students
would be at risk while scenario A predicted 5% of students to be at risk. Both the previous study
and scenario A indicate that schools with high initial lead concentrations will experience the greatest
decrease in fraction of at-risk students when remediation efforts are implemented. Also, because lead
was present in other media, both predict approximately 5% of students to be at risk regardless of the
lead concentration in the school drinking water [27].

4.1.2. Scenario B

Scenario B estimated very few students to be at risk of elevated BLLs for the majority of schools.
Of the six schools with average water lead concentrations above 15 µg/L, four were projected to have
less than 1% of their students at risk, one was projected to have 3% of its students at risk, and the
extreme outlier was projected to have approximately 100% of its students at risk. When employing
scenario A, these same schools were modeled to have approximately 10%, 19%, and 100% at risk,
respectively. Aside from the extreme outlier, scenario B not only predicted significantly fewer students
to be at risk than scenario A, it predicted very few students to be at risk in general. For scenario B, the
percentage of at-risk students increased at a rate of only 0.05% per µg/L over the region depicted in
Figure 2. A lognormal distribution depicting scenario B is shown in Figure 7B. Scenario B predicted the
weighted geometric mean BLL across all the region’s 5- and 6-year-olds to be 0.99 µg/dL. This value is
depicted by the vertical line in Figure 7B. Since the distribution is lognormal, half of the students would
have BLLs greater than this value while half would have BLLs less this value. Approximately 140 of
the estimated 22,300 (0.6%), 5- and 6-year-olds were projected to have BLLs above the recommended
limit (5 µg/dL). Since the limit is well above the geometric mean, the area in Figure 7B representing
this fraction is not visible. Approximately 88% of the 140 at-risk children were students at the single
outlying school. In other words, remediation efforts at this school alone could prevent approximately
120 students from being at risk and would decrease the total percentage of at-risk 5- and 6-year-olds to
an indiscernible value.

4.1.3. Comparison of Scenarios A & B

Aside from the extreme outlier, scenario A’s lowest at-risk percentage (4.8% for several schools
with minimal average drinking water lead concentration) was almost double scenario B’s highest
at-risk percentage (3% for the school with an average drinking water lead concentration of 55.4 µg/L).
Since scenarios A and B assumed all students were exposed to the region’s 90th percentile and median
soil lead concentrations, respectively, scenario A may overestimate the percentage of at-risk students
while scenario B may underestimate it. However, as stated above, these scenarios can be interpreted
as probabilities of individual risk, in addition to percentages of at-risk populations. In other words,
scenario A can be interpreted as the probability that a typical student who is exposed to the region’s 90th
percentile soil lead concentration will have an elevated BLL. Viewing scenario A from this perspective,
Figure 2 shows that this typical student would have an 8% chance of having an elevated BLL when
exposed to an average school drinking water lead concentration of 15 µg/L. Furthermore, for the
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10% of students who are exposed to soil lead concentrations exceeding the 90th percentile value, the
chance of an elevated BLL while attending a school adhering to the 15 µg/L upper limit would be
exponentially greater than 8%. Therefore, for individual probability estimates, it is recommended to
employ both scenarios A and B depending on application and it is recommended to use site-specific
soil lead concentrations to ensure accurate predictions within these bounds. For reference, the median
soil lead concentration for the region studied was approximately 3 times greater than the national
naturally occurring median soil lead concentration of 18.1 µg/g [48].

4.2. Secondary School Assessment

4.2.1. Scenario C

Scenario C projected each school to have at least 13.2% of its students to be at risk of having elevated
BLLs. This included schools with minimal lead concentrations in the drinking water. In other words,
because the soil lead concentration and the BLL baseline were high for scenario C, all schools were
projected to have at least 1 in 8 students at risk of an elevated BLL. Applying a linear approximation to
scenario C in Figure 6, the fraction of at-risk students increased at a rate of 0.23% per µg/L. As was the
case for scenario A, since this rate of increase is relatively small, schools with low or mid-range water
lead concentrations would benefit more from mitigating the lead in the soil rather than mitigating
the lead in the water. One school had an average water lead concentration of 30 µg/L and thus was
projected to have approximately 20% of its students at risk of elevated BLLs. For this school, reducing
the water lead concentration to below the 15 µg/L limit could substantially reduce the fraction of
at-risk students. A lognormal distribution depicting scenario C is shown in Figure 7C. Scenario C
predicted the weighted geometric mean BLL across all the region’s secondary school students to be
2.99 µg/dL. This value is depicted by the vertical line in Figure 7C. Approximately 6900 of the estimated
50,800 secondary school students were projected to have BLLs above 5 µg/dL. The shaded area (13.6%
of the total area) in Figure 7C represents this fraction of students.

Analogous to the elementary schools, a fraction of the secondary schools had drinking water
samples analyzed for lead during 2017. Of the 68 secondary schools tested in 2019, 32 were also tested
in 2017. Although it is unknown if any remediation efforts were implemented between 2017 and 2019,
none of these 32 secondary schools exhibited an increase in water lead concentration between the
testing years. On the contrary, 3 schools exhibited significant decreases and the remaining 29 schools
exhibited no significant change. All 3 schools exhibiting a reduction had average first draw drinking
water lead concentrations greater than the recommended upper limit (15 µg/L) in 2017 but substantially
below this limit in 2019. The school having a concentration above the limit in 2019 was not tested
in 2017.

4.2.2. Scenario D

Scenario D predicted very few students to be at risk of elevated BLLs for the majority of schools.
Scenario D not only predicted significantly fewer students at risk compared to scenario C, it estimated
very few students to be at risk in general. Applying a linear approximation to scenario D in Figure 5, the
fraction of at-risk students increased at a rate of 0.05% per µg/L. For the school with an average water
lead concentration of 29.7 µg/L, only 2.1% of its students were at risk of elevated BLLs (compared to
20% via scenario C). A lognormal distribution depicting scenario D is shown in Figure 7D. Scenario D
predicted the weighted geometric mean BLL across all the region’s secondary school students to be
1.53 µg/dL. This value is depicted by the vertical line in Figure 7D. Approximately 300 of the estimated
50,800 (0.6%) secondary school students were projected to have BLLs above the recommended limit
of 5 µg/dL. Since this limit is well above the geometric mean, the area in Figure 7D representing this
fraction is not visible.



Water 2020, 12, 1826 14 of 20

4.2.3. Comparison of Scenarios C & D

The percent of at-risk students was significantly lower for all schools when employing scenario
D as compared to scenario C. Scenario C’s lowest estimated percentage (13.2% for several schools
with minimal average drinking water lead concentration) was over 6 times scenario D’s highest
estimated percentage (2.1% for the school with an average water lead concentration of 29.7 µg/L). This
indicated that scenario D may underestimate the percentage of at-risk students whereas scenario C
may overestimate the percentage of at-risk students. However, the large difference between scenarios
C & D is derived from the baseline BLL input, not the difference in soil lead concentration exposure (as
was the case for scenarios A & B). In other words, students with elevated BLLs during elementary
school have significantly increased risks of elevated BLLs during secondary school, even if they
reduce their exposure to lead during secondary school. This is initially apparent by inspection of the
distribution of BLLs in Figure 4. Although a wide range of average first draw lead concentrations were
measured in the secondary schools, the modeled BLLs had a very narrow distribution. This effect is
best demonstrated by employing Bowers’ model using the individual probability interpretation in
the two examples provided in Section 2 of the supplemental file. The two examples demonstrate that
lead mitigation during secondary school (by either soil or water remediation) does not substantially
narrow the gap between the two scenarios observed in Figure 6. According to Bowers’ model, if a
student enters secondary school with a preexisting tendency to be at risk of an elevated BLL, he or she
will continue to be at risk even if lead remediation efforts are implemented at the secondary school.
Therefore, the primary focus for lead exposure mitigation should be at the elementary school level. If
the student’s baseline BLL is high, the student has a high chance of being at risk even when the lead
exposure has been mitigated during secondary school. In the school district studied, there were several
elementary schools with average water lead concentrations above 15 µg/L, while there was only one
secondary school exceeding this concentration.

In general, all four of the scenarios presented exhibit a continual rise in BLL. As exposure to
lead continues over time (regardless of the source), the fraction of the population at risk of elevated
BLLs also rises. All models approached a 100% chance for individuals having elevated BLLs when
the population was exposed to very high lead concentrations in any medium. Efforts should be
made to extrapolate these results to the region’s students of other ages. The IEUBK model targeted
5- and 6-year-olds while Bowers’ model targeted 11- to 17-year-olds. Since scenario A estimated the
former population’s chance of risk to be approximately 5.8% while scenario C estimated the latter
population’s chance of risk to be approximately 13.6%, a rudimentary interpolation would indicate that
approximately 10% of 7- to 10-year-olds could be at risk of elevated BLLs (using the 90th percentile soil
lead concentration). A similar method could be employed to interpolate between scenarios B and D.

4.3. Sensitivity Analysis

4.3.1. IEUBK Model

As indicated by previous authors [42] and the IEUBK guidance manual [20], the soil and dust
lead concentrations are the most sensitive concentration parameters in the IEUBK model and thus
require site-specific values for accurate modeling. This trend is depicted in Figure 8 below. The
soil concentrations depicted in Figure 8 are representative of the concentrations referenced in this
study. The lowest concentration, 20 µg/g, is approximately the median naturally occurring soil lead
concentration in the United States [48] whereas the next concentration, 52 µg/g, is the median soil lead
concentration in the school district [43]. The two elevated concentrations, 200 µg/g and 260 µg/g are
the IEUBK model’s default soil concentration [36] and the school district’s 90th percentile value [43],
respectively. The x-axis range compares with that of Figure 2’s to depict the average first draw drinking
water lead concentrations in elementary schools. As observed in the data set populated on Figure 2,
the median drinking water lead concentration in this study was 0.71 µg/L whereas the 90th percentile
value was 5.45 µg/L. Therefore, Figure 8 represents the combinations of soil and water concentrations
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that are most likely to be observed for the given population. As the figure demonstrates over this
most-common interval, the GM BLL increases at a rate of approximately 0.02 µg/dL for every 1 µg/L
increase in average first draw drinking water lead concentration. This rate is consistent for all soil lead
concentrations since all four trendlines exhibit the same constant slope. Additionally, the GM BLL
increases at a rate of approximately 0.006 µg/dL for every 1 µg/g increase in soil lead concentration.
Again, this rate is consistent over the range of interest since the trendlines are spaced solely according
to their differences in soil concentration.
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Figure 8. Predicted geometric mean BLL as a function of both the elementary school average first
draw drinking water lead concentration and the region’s soil lead concentration according to the
IEUBK model.

To understand the effects of these rates, the differences between the 90th percentile concentration
and the median concentration was calculated for both soil and water. The 90th percentile soil
concentration (260 µg/g) minus the median soil concentration (52 µg/g) yielded a 208 µg/g range
in soil concentrations for the region. Likewise, 90th percentile average first draw drinking water
concentration (5.45 µg/L) minus the median average concentration (0.71 µg/L) yielded a 4.74 µg/L
drinking water concentration range. By multiplying the soil concentration range (208 µg/g) by the
BLL soil rate (0.006 µg/dL per µg/g), the overall soil effect was calculated to be 1.2 µg/dL. Likewise,
by multiplying the drinking water concentration range (4.74 µg/L) by the BLL drinking water rate
(0.02 µg/dL per µg/L), the overall drinking water effect was calculated to be 0.1 µg/dL. Therefore, by
observing these rates over the range of population data, it is clear that the soil concentration’s effect on
BLL is 10 times greater than the drinking water’s effect on BLL for the population studied. In other
words, with all other factors being equal, a student experiencing the 90th percentile drinking water
concentration at school will have a BLL that is only 0.1 µg/dL higher than a student experiencing the
median drinking water concentration at school. However, a student experiencing the 90th percentile
soil lead concentration will have a BLL that is 1.2 µg/dL higher than a student experiencing the median
soil lead concentration. This analysis demonstrates the need for site-specific soil lead concentrations
when using the IEUBK to model BLLs from lead in drinking water. Fine adjustments (drinking water
concentrations) to the model can only be implemented after broad parameters (soil lead concentrations)
are accounted for. Also, this analysis demonstrates the importance of mitigating soil lead concentration
levels at elementary schools. Although it is advisable for lead remediation efforts to be enacted for
fixtures with extremely high drinking water lead concentrations, those efforts may be in vain if the soil
lead concentrations of the region are high.

4.3.2. Bowers’ Model

In addition to the soil and water lead concentrations required by the IEUBK model, Bowers’
model requires the user to input the population’s preexisting BLL. The effects of this baseline BLL are
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displayed in Figure 9 below. The figure shows the model’s projections for GM BLL as a function of the
secondary school’s average first draw drinking water lead concentration, the baseline BLL, and the soil
lead concentration. The model projects the GM BLL to increase at a rate of 0.014 µg/dL for every 1 µg/L
increase in drinking water lead concentration, to increase at a rate of 0.0005 µg/dL for every 1 µg/g
increase in soil lead concentration, and to increase at a rate of 1 µg/dL for every 1 µg/dL increase
in baseline BLL. Viewed from this perspective, it is apparent that the baseline BLL acts as a vertical
shift of the projected BLL and has the most significant impact on the projected BLL. The soil lead
concentration and the drinking water lead concentration have significantly less impact on the projected
BLL. Therefore, when the Bowers’ model applies, soil and drinking water lead remediation efforts
at secondary schools will have limited success in BLL reduction if the students enter the secondary
schools with elevated BLLs. This is demonstrated by two examples in Section 2 of the supplementary
file. This emphasizes the need to reduce the population’s BLL during elementary school (potentially
via soil and drinking water lead remediation) to reduce the population’s BLL during secondary school.
In general, Bowers’ model is intended for use among populations with low baseline BLLs and the
baseline BLLs depicted in Figure 9 (2, 7, 12 µg/dL) are considered low according to the model [7].
Therefore, it is applicable for analysis herein.
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Figure 9. Predicted geometric mean BLL as a function of the secondary school average first draw
drinking water lead concentration, the baseline BLL, and the region’s soil lead concentration according
to bowers’ model.

4.4. Limitations

This study estimated the children’s blood lead levels using the drinking water lead concentration
data acquired from one Tennessee school district. Several assumptions were employed in the models
and therefore a thorough understanding of the study’s limitations is essential. As indicated above,
the first draw school drinking water lead concentration was calculated as the arithmetic mean of all
the sampled fixtures’ lead concentrations. In this calculation, each drinking water fixture was treated
equally—regardless of its location within the school, frequency of use, or fixture type. Therefore,
individual fixtures with high lead concentrations could significantly increase the average first draw
school drinking water lead concentration. Thus, these outliers could disproportionally increase the
predicted geometric mean BLL even though they may not frequently be used. Although this calculation
could therefore bias the results to favor individual fixtures, all seven schools (6 elementary, 1 secondary)
in this study with arithmetic means greater than 15 µg/L had multiple fixtures with lead concentrations
greater than 15 µg/L. Thus, it is reasonable to deduce that no individual fixture had the sole effect on a
school’s potentially high average drinking water lead concentration level. Furthermore, the method
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assumes all students consume half of their daily intake of water from school sources (distributed
equally among all fixtures) and half from home sources. This assumption is similar to that of previous
authors and corresponds well with those authors’ results [25,27]. However, if students are found to
consume a different fraction of their water at school, or if they are found to favor one fixture over
other another fixture, the geometric mean BLL would vary accordingly. Outside of modeling, other
limitations involved the water sampling. Samples collected during the fall break had experienced
extended stagnation whereas those collected before the school day had only been stagnant overnight.
The longer stagnation period could have increased the lead concentration in the first draw water
samples [49].

5. Conclusions

Two models were used to assess the risk of lead in school drinking water on students’ BLLs.
The IEUBK model was used for 5- and 6-year-old students and Bowers’ model was used for 11- to
17-year-old students. Two scenarios, one employing the 90th percentile soil lead concentration and
one employing the median soil lead concentration, were developed for each model. Site-specific lead
concentrations were deemed critical to both models. The IEUBK model output was heavily dependent
on the soil lead concentration input and the Bowers’ model output was heavily dependent on the
IEUBK model output (baseline BLL). For elementary schools with low water lead concentrations, it
may be more effective to mitigate the soil lead concentration than the water lead concentration to
minimize the risk of elevated BLLs. Seven schools (6 elementary, 1 secondary) had an average water
lead concentration above the recommended limit of 15 µg/L. It was projected that as much as 5.8% of 5-
and 6-year-olds and 13.6% of 11- to 17-year-olds could be at risk of elevated BLLs. This equated to
approximately 1300 and 6900 students in each age group, respectively. At the elementary school level,
the two scenarios (high soil lead concentration and median soil lead concentration) yielded significantly
different outputs due to the differences in soil lead concentration. However, at the secondary school
level, the two scenarios yielded significantly different outputs due to the differences in baseline BLL
inputs. This indicated that students with elevated BLLs during elementary school have significantly
increased risks of elevated BLLs during secondary school, even if they reduce their exposure to lead
during secondary school. Thus, it is recommended to focus efforts of lead remediation on elementary
schools to minimize early exposure. As exposure to lead continues, the BLL increases. Therefore,
the projected BLLs were higher for secondary school students than for elementary school students.
The sensitivity analysis revealed the significant variations of estimated GM BLLs by the model input
parameters and demonstrated the importance of site-specific data. Further research is suggested to
identify the sources of lead release to the schools’ tap water and to develop the appropriate remediation
practices. Future comparisons of the modeling predictions with actual lead blood levels for these
student populations could be very illuminative.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/6/1826/s1.
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