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Willit ever be possible to sue anyone for damaging the climate? Twenty years after this
question was first posed, we argue that the scientific case for climate liability is closed.
Here we detail the scientific and legal implications of an ‘end-to-end’ attribution that

links fossil fuel producers to specific damages from warming. Using scope 1and 3
emissions data from major fossil fuel companies, peer-reviewed attribution methods
and advances in empirical climate economics, we illustrate the trillions in economic
losses attributable to the extreme heat caused by emissions fromindividual
companies. Emissions linked to Chevron, the highest-emitting investor-owned
company in our data, for example, very likely caused between US $791 billion and
$3.6 trillion in heat-related losses over the period 1991-2020, disproportionately
harming the tropical regions least culpable for warming. More broadly, we outline a
transparent, reproducible and flexible framework that formalizes how end-to-end
attribution could inform litigation by assessing whose emissions are responsible and
for which harms. Drawing quantitative linkages between individual emitters and
particularized harms is now feasible, making science no longer an obstacle to the
justiciability of climate liability claims.

Once climate attribution emerged as a field of inquiry, scholars both
scientific' and legal® raised questions about whether climate liabil-
ity claims could be pursued through common law?. Extreme weather
events—floods, droughts, extreme heat and more—upend lives, under-
minelivelihoods and damage property. If such extremes could be linked
toclimate change, the logic goes, injured parties could seek monetary
orinjunctive relief through courts'. Over the past two decades, science
and law have been engaging a set of challenges that take climate liability
froma thought experiment into a realistic practice.

Scientifically, the focus has been on developing standardized meth-
odsto codify ascientific consensus on the role climate change playsin
amplifying extreme events, as reflected in the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change (IPCC)*. Such ‘con-
sensus’ methods are widely accepted and used in the scientific com-
munity, having been applied in peer-reviewed publications toavariety
of events®”’ from heatwaves®’ to droughts'®", floods', hurricanes™*
and wildfires®. This science has advanced such that events are now
attributed in near real time'®" or in advance using forecast models®.
As courts rely on scientific syntheses from organizations such as the
IPCCY, the consensus developed around event attribution methods?
suggests that they could meet legal standards for admissibility?. By
revealing the human fingerprint on events previously thought to be
‘acts of God’, attribution science has helped make climate change legally
legible?? ™,

Legally, a focus has been on assessing whether climate attribution
iscompatible with existing causation and standing frameworks. More
than100 climate-related lawsuits have been filed annually since 2017;

many more will come. The legal theories forming the basis for these
cases vary widely, shaping who is liable and for what conduct®. For
example, some cases seek to accelerate climate policy under the theory
that people have the right to climate stability®. Others use agreements
such as the Energy Charter Treaty to stymie climate action”. Some
cases centre on the disinformation and climate denialism allegedly
fomented by fossil fuel companies?, whereas others contend that
companies have failed to adequately disclose climate risks to inves-
tors®. Other climate-related cases fall outside these categories and
new legal theories will continue to emerge.

Here we focus onthe theory that people can hold emitters liable for
the damage caused by warming'*°. Such cases mirror efforts to hold
industries such as tobacco® and pharmaceuticals® liable under legal
standards such as the duty of care, public nuisance, failure towarn or
strict liability. Because of the broad financial, legal and climaticimplica-
tions of these suits®, assessing the scientific support for their claims
is critical. Although these cases—similar to disinformation-focused
cases—use evidence that fossil fuel companies have long been aware
of climate change, they specifically attempt to link these companies
tothe human costs of their emissions. For example, an Oregon county
has sued several fossil fuel companies for amplifying the 2021 Pacific
Northwest heatwave andits resulting economic and health costs*. New
York City and Rhode Island have brought similar claims®?¢, Companies
such as ExxonMobil are a frequent target, with plaintiffs ranging from
residents of flooded Alaskan villages to Puerto Rican municipalities
damaged by hurricanes Irma and Maria®"*, Although attribution sci-
ence is relevant to wider climate policy, accountability and justice, it
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is particularly helpful to this theory of liability, as bothinitial standing
questions and the merit stages of cases may require plaintiffs to show
causal linkages between emitters and particularized injuries.

The fate of climate liability cases remains uncertain: success, failures
and appealsabound. In2015, the nonprofit Urgenda Foundationwona
key ruling that the Dutch government breached its constitutional duty
of care by not reducing emissions®. More recently, a court ruled that
Montana’s efforts to deregulate emissions violated its residents’ right
to a healthy environment*®. By contrast, New York’s case against five
fossil fuel companies was dismissed in 2018 on the grounds thatjudges
should not make climate policy. As cases laboriously wind their way
through courtsaround the world, litigation shows no signs of slowing?.
And as extreme eventsintensify and losses accumulate—and as political
actionon climate change lags the urgency of the crisis—more people are
turning to the legal system for relief®. There is talk of a “coming wave
of climate legal action” for which courts are woefully unprepared*.

Here weillustrate how climate attribution that goes from emissions to
impactat the corporate scaleisnow possible, addressing a substantial
hurdle to climate liability. Using peer-reviewed methods, we estimate
the economiclosses resulting from the extreme heat caused by emis-
sions from major fossil fuel companies (‘carbon majors’) over the period
1991-2020. We present two actionable approaches for the end-to-end
attribution framework: one considering the accumulated harms from
ahazard, such as heatwaves over 1991-2020, and another considering
the harms from a specific event, such as the 2003 European heatwave.
The cumulative and event-specific approaches can be applied to myriad
scales of emitters and claimants, and extended to different classes of
hazards, from heatwaves as here, to floods, droughts, sea-level rise
and more. We also show how each approach can be applied in a way
that is agnostic about any particular emitter, allowing communities
to assess responsibility for losses, rather than naming parties prima
facie. We argue that, although this type of end-to-end attribution will
provide clarity in some respects, the ultimate question of whether
climate liability is justiciable will be resolved in courts. More widely, we
advocate for the creation of atransparent and objective science-based
initiative to provide peer-reviewed and reproducible attributions and
expert testimony to ensure that courts can evaluate these emerging
legal claims.

Attribution science and causation

To sue over an injury, alitigant typically must demonstrate a causal
connection between the action of the defendant and the plaintiff’s
injury, sometimes through meeting a ‘but for’ standard: “but for the
actions of the defendant, the plaintiff would not have been injured”.
Demonstrating ‘but for’ causality in the context of climate impacts is
difficult®: atmospheric carbon dioxide is well mixed and many par-
ties have emitted; emissions and impacts are dislocated in space and
time*?; the causal chain from emissions to impacts is nonlinear**; and
uncertainties compound from emissions, to warming, to hazards, to
impacts*. Such causal ambiguity is not unique to the climate. Itis a
feature of assessing liability for environmental hazards more widely,
which has led to atiered legal strategy of establishing both ‘general’
and ‘specific’ causation®. General causation assesses whether a hazard
could cause a type of harm, such as the way asbestos increases cancer
risk. Itis often held to a high standard of scientific certainty*. Specific
causation, onthe other hand, considers whether adefendant’s actions
caused the particularinjury to the litigant: whether a specific worker’s
cancer was caused by asbestos in their workplace, for example. Insome
jurisdictions, specific causationis held to aless strict ‘more likely than
not’ standard®.

Resolving causality in climate liability could take many forms beyond
establishing ‘butfor’ causation. We can, for example, assign liability pro-
portionally according to emitters’ contributions to total emissions**3,
using deductive storyline-type approaches about how emissions-driven
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warming has shaped particular types of climate impacts*’ or based
on the social cost of carbon®**', These approaches alleviate the need
to show that the injury would not have occurred without a specific
emitter’s contribution and is generally consistent with the original
formulation of climate liability: if global warming has tripled the risk
ofaflood, thenwarming s responsible for two-thirds of its risk, making
contributors proportionally liable for two-thirds of its harm'. Such a
philosophy accords with the extreme climate event attribution field,
whichlinks the risk or magnitude of an event to global warming. How-
ever, proportional contributions to global warming may not translate
into equivalent contributionsto particularized injuries. Nonlinearities
among warming, climate extremes and people imply that the same
emissions can have different effects at different times*, and cascad-
ing uncertainties mean that the signal of an individual emitter may
not rise above the noise in a complex climate system®. Furthermore,
somejurisdictions have limited the application of market-share liability
theories* and courts may be reluctant to accept thisapproachinplace
of more traditional ‘but for’ causation standards®.

Suchrealities clarify the need to scientifically demonstrate ‘but for’
causation, specifically the linkage between an individual emitter and
aparticularinjury. The lack of end-to-end attributions has been cited
asabarrier to climate litigation?>**°>* and has been used by fossil fuel
companies to argue that plaintiffs lack standing to sue over climate
damages®. As aresult, despite the important role for existing attribu-
tion science in informing approaches such as proportional liability,
scientificapproaches that demonstrate causal linkages from emitters
to impacts have been termed the Holy Grail of climate litigation®.

Advances enabling end-to-end attribution

Despite these challenges, two recent advances make end-to-end climate
attribution possible. First, physical science can more confidently con-
nectindividual emitters tolocal climate change. Second, social science
canmore confidently connectlocal climate change to socioeconomic
outcomes.

For the first, ‘source attribution’ research® has linked emissions
from countries®*' and carbon majors®® to increases in global mean
surface temperature®® (GMST), sea-level rise®, ocean acidification®*
and local extreme climate events® %, Source attribution often uses
anemissions-driven climate model to simulate historical climates and
counterfactual climates, in which the latter is the same as the former,
save for the removal of one emitter’s time-varying emissions (that is,
a‘leave-one-out’experiment). The difference between the two simula-
tions represents the contribution of the removed emitter, providing
atest of ‘but for’ causation?: but for the emissions of this actor, the
climate would have been thus. We could perform these simulations
withacoupled Earth system model®s, but suchmodels are opaque and
computationally expensive. Acomputationally tractable approachis
to use reduced-complexity climate models (RCMs) that accurately
simulate the behaviour of the Earth system using a smaller number
of equations.

RCMs®7? have long been part of the consensus methods used in
IPCC Assessment Reports” for purposes such as simulating mitigation
pathways™. More recently, RCMs have been applied to source attribu-
tion for tasks such as simulating country-level contributions to global
mean temperature change***, RCMs are zero-dimensional, lacking
spatial information. But peer-reviewed methods such as pattern scal-
ing”” provide robust statistical relationships between global and local
climates thatallow scientists to estimate local temperature change on
thebasis of RCM output”®, Together, RCMs and pattern scaling link the
contributions of individual emitters to local temperature changes in
an efficient, transparent and reproducible manner®*>¢,

However, local climate changes do notinevitably imply particularized
injuries. To connect individual emitters to impacts, researchers must
quantify the human consequences of local climate changes. Enter the



second notable advance: more robust quantifications of the socioeco-
nomicimpacts of climate change”. Recent peer-reviewed work has used
econometricstoinfer causal relationships between climate hazards and
outcomessuchasincomeloss”, reduced agricultural yields®, increased
humanmortality®®*and depressed economic growth® %, Inthe attribu-
tion context, these causal relationships have been applied to quantify
the historical costs of flooding®®, crop losses®” and reduced economic
output fromincreasesinaverage®® and extreme® temperatures. These
methods are also consensus-based, reflected in synthesis reports such
as the US government’s Fifth National Climate Assessment®.

Although the ‘fraction of attributable risk’ metric is another
consensus-based attribution approach applied widely to extreme
events and their impacts® %, it is not necessarily suitable for quan-
tifying the influences of climate change on people, which are often
nonlinear and can depend on event intensity rather than probabil-
ity*?¢%8 Approaches thatbetter resolve hazards and costs are helpful
todirectly connect greenhouse gas emissions to socioeconomic losses.
For example, Strauss et al.”’ relied on hydrodynamic modelling and
property damage estimates to quantify the anthropogenic contribu-
tion to damages from Hurricane Sandy in New York, an approach more
tailored and nuanced than the fraction of attributable risk. Our more
generalized framework uses econometric dose-response functions
that parameterize relationships between climate hazards and human
outcomes, but it could easily be adapted to other settings, such as
flooding from a particular storm.

Here we show that emissions traceable to carbon majors have
increased heatwave intensity globally, causing quantifiable income
losses for peoplein subnational regions around the world. Our analysis
uses reductions in gross domestic product per capita (GDPpc) growth
to represent particularized injuries, consistent with recent suits in
Oregon**and several Puerto Rican municipalities”. Both of these cases
cite the severe economic burden associated with extreme climate
events, so scientific attribution of that claim is potentially valuable,
even ifit does not fully resolve the precise damages in those cases.
However, the power of the attribution framework we present is that it
isflexible, transparent and modular, meaning that other damages (for
example, adaptation costs based on alternative damage functions),
other hazards (for example, tropical cyclones) and other time periods
(whether for emissions or damage accounting) can be included to
support particular attribution questions as the scientific, legal and
climatic landscapes develop.

An end-to-end attribution framework

The oil, coal and gas extracted by fossil fuel companies have produced
substantial emissions of carbon dioxide and methane over the past
100 years (Fig. 1a). Between 1920 and 2020, Saudi Aramco, Chevron
and ExxonMobil produced acumulative total 0f16.6,14.2 and 13.2 GtC
inCO, emissions, respectively. Emissions data are drawn from the pub-
licly available Carbon Majors database®>'°, which makes use of public
production information from sources such as company regulatory
filings, as well as standard emissions factors. These datainclude both
scopelandscope 3 emissions, whichincludes emissions from the pro-
duction and combustion of the fossil fuels sold by these companies.
We note that these emissions ledgers are probably conservative: they
donotinclude scope 2 emissions or leaks and spills and are subject to
underreporting, especially early in the twentieth century®’. Although
we only illustrate emissions since 1920 in Fig. 1, our analysis uses all
available company-level data (Extended Data Table 1).

Tolink these companies to specificimpacts from their emissions, we
use a three-step, peer-reviewed, end-to-end attribution framework®
(Methods). The goal of this framework is to construct a ‘counterfac-
tual’ world in which an emitter’s contribution to local extreme heat
isisolated and removed. We first use the Finite amplitude Impulse
Response (FalR) RCM” to translate companies’ emissions into GMST

changes (Fig.1b). Next, we apply patternscaling” to calculate resulting
subnational changes in extreme heat, defined here as the temperature
of the five hottest days in each year, or ‘Tx5d’ (Fig. 1c). Last, we apply
an empirical damage function to calculate income impacts of these
extreme heat changes®® (Fig. 1d). We compare heat-driven economic
damages between the historical and counterfactual worlds, with their
difference being the company’s contribution to damages. Nonclimate
factors, such as changesin the global oil trade, are held constant. Our
analysis centres only onthe temperature effects of the emissions pro-
duced by carbon majors.

We first simulate historical GMST change using total emissions with
FalR v2.1.0 over 1,000 times, sampling parametric uncertainty using
IPCC-based parameter combinations'®. In our counterfactual simula-
tions, we resimulate GMST change after subtracting each company’s
CO,and CH, emissions fromglobal emissions. The difference between
the observed and each company’s counterfactual simulation represents
the GMST change attributable to that company (Fig. 1b). According to
our analysis, forexample, Chevronisresponsible for about 0.025 °C of
the >1°C warming in 2020. We then translate these FalR-based GMST
change time series into spatiotemporal patterns of Tx5d change using
pattern-scaling coefficients estimated from 80 Earth system model
simulations, showing that, for example, ExxonMobil is responsible
fora 0.036 °Cincrease in average Tx5d values over 1991-2020 glob-
ally (Fig. 1c).

Finally, we use an empirically derived damage function that gener-
alizes the relationship between extreme heat intensity and economic
growth® to estimate the impacts of company-caused Tx5d changes
(Fig.1d). This relationship varies as afunction of regional average tem-
perature: tropical regions lose more than 1 percentage point (p.p.) in
growth for each 1°Cincrease in the intensity of the five hottest days
in each year, whereas temperate regions experience modest effects®
(Fig.1d). Although other factors such as sectoral compositionand adap-
tive capacity may affect regional sensitivity to extreme heat, average
temperature has been found to predict that sensitivity more effectively
than average income, consistent with other work®+%,

We calculate losses in the historical and leave-one-out simulations
10,000 times for each region using aMonte Carlo approach (Methods),
taking their difference to calculate losses attributable to the emissions
from each company. Because changes in annual mean temperature
shape the impacts of extreme heat, we also pattern-scale regional
annual mean temperature. Our final calculations incorporate both
changes in Tx5d itself as well as changes in the average temperatures
thatmoderate the effect of Tx5d (ref. 89). Asaresult, emissionsincrease
both theintensity of extreme heat and its marginal damage by raising
underlying average temperatures. The interaction between mean and
extreme temperature explains why the pattern of heat-driven losses
does not simply mirror that of the marginal effects of extreme heat,
which shows benefits in high-latitude regions®. We also account for
the economic rebound shown in previous work®, in which the effect
of extreme heat is recovered after 2-3 years, meaning that we do not
assume permanent growth impacts of extreme heat.

Inthis analysis, we focus on the costs resulting from extreme heat as
represented by Tx5d, rather than combining the total costs across myr-
iad hazards'®'%*, such as rainfall extremes'® or sea-level rise®. The first
reason for this choice s legal: so far, litigation has often been motivated
by a single hazard or high-impact event, such as an Oregon county’s
suit over the 2021 Pacific Northwest heatwave, probably because of the
legalimperative to demonstrate specific causality. Although combining
damages from many hazards would better capture the overall costs of
warming'®1% itis inconsistent with the specificity that has motivated
legal claims so far. As legal efforts evolve to consider several hazards or
amore complete accounting of damages, so too could the attribution
framework we present here. The second reason is physical: extreme
heat is robustly linked to global warming’® and has large and direct
economic costs®*%,
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Fig.1|Estimated change inglobal mean temperature and local extreme
heatby carbon majors. a, CO, emissions inmegatonnes of carbon (MtC)
peryear fromthe top five emitting fossil fuel companies (‘carbon majors’).

b, Changesinglobal mean temperature caused by the cumulative emissions

of each carbon major. Vertical axis denotes the magnitude of global warming
resulting from each company ineachyear. Solid lines show the mean from1,001
FalR simulations, each run with adifferent calibrated parameter set; shading
shows the 90% range across the FalR ensemble. ¢, Changesin1991-2020 global
average subnational Tx5d (temperature of the five hottest days in each year)
from each carbon major, estimated by combining the FalR simulations with

Heatwave damage from carbon majors

Theglobal economywouldbe $28 trillion richer (90% (very likely) range:
12-49,in 2020 US dollars) were it not for the extreme heat caused by
the emissions from the 111 carbon majors considered here (Fig. 2). To
provide examples of this attribution, Fig.2a shows losses attributable
to each of the top five emitting companies in our data. Saudi Aramco s
responsible for $2.05 trillion (90% range: 0.85-3.64) inglobal economic
losses fromintensifying extreme heat and Gazpromisresponsible for
about $2 trillion (90% range: 0.83-3.55). The contributions from these
twostate-owned enterprises are theresult of their recent and rapid emis-
sions (Fig.1a), despite not makinglarge contributions earlierinthe twen-
tieth century. Chevron, ExxonMobil and BP have caused $1.98 trillion
(0.79-3.57), $1.91 trillion (0.77-3.43) and $1.45 trillion (0.59-2.60) in
losses, respectively (Fig. 2a). Investor-owned companies (for example,
Chevron, ExxonMobil and BP) and state-owned enterprises (for exam-
ple, Saudi Aramco and Gazprom) are each collectively responsible for
approximately $14 trillion in losses (Fig. 2b). Ranges in these damage
estimates arise from carbon cycle and climate uncertaintiesin the FalR
simulations and the parametric uncertainties from the patternscaling
and damage function. However, the 99% range for each of the top five
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companies does not include zero (Fig. 2a), making it virtually certain
that each has contributed to global heat-driven losses.

Losses can also be assessed at finer, more legally relevant regional
scales, revealing inequities in the causes and consequences of global
warming (Fig. 2c). Together, extreme heat from the top five emitting
companies (Fig. 2a) has driven annual GDPpc reductions exceeding
1% across South America, Africa and Southeast Asia. By contrast, the
USA and Europe—where Gazprom, Chevron, ExxonMobil and BP are
headquartered—have experienced milder costs from extreme heat.
Owing to the dependence of Tx5d damages on mean temperatures,
mid-latitude regions experience greater heat-driven losses as their
average temperatures rise; the same holds for higher latitudes, but
thelosses are smaller. If we hold mean temperatures at their observed
values and instead estimate damages from changes in Tx5d intensity
alone, the pattern of damages becomes heterogeneous, with mild
benefits in high-latitude regions rather than mild losses, reflecting
the pattern of Tx5d marginal effects (see Fig. 2c and Extended Data
Fig.1). The gradient of losses increases equatorward irrespective of
whether we allow mean temperatures to change (Fig. 2cand Extended
Data Fig. 1), emphasizing the global inequity in extreme heatimpacts
and their spatial dislocation from the emissions that produced them.
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We emphasize a cumulative framing of end-to-end attribution,
noting that an emitter’s impact can encompass several events and
years. However, much of climate attribution and liability is focused
on exceptional singular events, such as the 2021 Pacific Northwest
heatwave'?”. A flexible end-to-end attribution framework should be
able to account for individual extreme events as well as cumulative
exposure. Our approach does this, showing the contributions of carbon
majors to four historic heatwaves: India in 1998 (Fig. 3a,e), France in
2003 (Fig. 3b,f), Russia in 2010 (Fig. 3c,g) and the continental USA in
2012 (Fig.3d,h). Although each heatwave has been studied extensively
(forexample, refs. 8,9,87,108,109), the contributions of carbon majors
have not yet been quantified.

Together, the top five companies increased the intensity of the
five hottest days corresponding to those events by 0.08, 0.11, 0.27
and 0.09 °C, respectively (Fig. 3a-d), and thus can be associated to
losses from those events (Fig. 3e-h). For example, Chevron’s emis-
sionsare responsible for $1.9 billion (0.31-4.68), $3 billion (0.05-7.05),
$2.8 billion (gains of 0.99 to losses of 7.69) and $28.8 billion (4-61) in
losses from the 1998 Indian, 2003 French, 2010 Russian and 2012 North

American events, respectively. We perform these attributions by apply-
ing the observation-based generalized damage function to specific
regions and years, a practice consistent with work that estimates how
individual extreme events affect economic output'® and the wider use
of deductionin climate attribution®. Although any individual region or
year willmodestly deviate from the generalized response we estimate,
the approach mathematically approximates their responses on average.

Collectively, these results provide the first estimate of the global
economic toll that individual fossil fuel companies have produced
owing to the extreme heat caused by their emissions of carbon dioxide
and methane.

Clarifying whois responsible

How could end-to-end attribution analyses such as ours be used? Each
case will differ and depend on the motivation of the litigants and their
climate context. As presented in Figs. 2and 3, science can clarify ‘but for’
causation atvarious scales across aclass of hazards, such asheatwaves,
or foraparticularevent, such as the 1998 Indian heatwave. Butitisalso
essential to clarify who is potentially liable. There are many emitters,
and affected communities may want to know who is most liable for
impacts they endure—whom do they name as defendant? A nation?
A company? A collective? Asector? This, too, science can help clarify.

So far, attorneys and litigants have often named defendants as
part of the initial legal process, under the assumption that knowing
a defendant’s emissions is sufficient to make a claim. Our analysis
makes clear, however, that what matters is not simply the magnitude
of the emissionsbut also the timescale over which they were released
and theimpactunder consideration. Nonlinearities at each step from
emissions to impactsimply that proportional contributions to global
warming are not necessarily equivalent to proportional contributions
toimpacts. And yet calculating the contributions of all possible emit-
ters couldbe costly. Legal work is expensive and time-consuming, and
the need toretainexperts could beacrucial barrier to the low-income
or underresourced communities who have the greatest claims for
restitution.

Science can help claimants assess potential defendantsinatranspar-
entand low-cost way. As anexample, we present a strategy for assessing
who is responsible for cumulative losses from extreme heat (Fig. 4).
Here the analysis asks: “how much extreme heat damageis attributable
to agiven percentage of global emissions?” Our approach is straight-
forward: werepeat our leave-one-out simulations usingidealized per-
cent contributions to total 1850-2020 CO, and CH, emissions, rather
than the emissions of any particular company. Such an approach is
actor-agnostic and scale-agnostic, meaning that it simply presents
the impacts associated with a given contribution to global emissions
made over agiven time period.

Global losses from extreme heat scale quasilinearly with emissions
contributions (Fig. 4a). Each extra percentage point contribution to
total 1850-2020 CO,and CH, emissions generates a further $834 billion
inglobal economiclosses from extreme heatin1991-2020. Our general-
ized approach enables litigants to consider emitters at various scales
quickly: anyindividual or group of emitters canbe placed in this contri-
bution-damages space torapidly assess their attributable impacts. For
example, the general relationship between contributions and heatwave
damages canbe used to link the top five companies (Fig.4a, orange) or
all companies (Fig. 4a, blue) to losses, on the basis of collective emis-
sions. Nations, economic sectors or industries could equally be placed
in this space to assess contributions to heat-driven losses.

Crucially, these losses depend on the time period over which the
emissions are counted (Fig.4b), demonstrating key choices that must
be madeby policymakers, litigants and courts. If accounting beginsin
1990, around the development of the scientific consensus on climate
change®, heatwave losses attributable to an actor contributing 5% of
global emissions total $2.5 trillion (90% range:1.05-4.47), contrasting
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losses owing to Tx5d intensificationinIndiain1998 (e), France in2003 (f),

with the $4.2 trillion (1.7-7.5) when counting from 1850. However, fos-
sil fuel companies have accurately predicted climate change since the
1970s"° and have since used their power and profit to cast doubt on
the relationship between fossil fuels and warming™. If we use the 1977
date of the first reported successful projection of global warming by
ExxonMobil®, heatwave losses attributable to an actor contributing
5% of global emissions total $3.3 trillion (1.4-5.8). These losses are all
large, with 99% ranges that do not include zero, but they can vary by
>50% across start dates.

Remaining work and ways forward

By clarifying ‘what’ damages and ‘who’ is responsible, our attribution
frameworks have flexibility and applicability to many contexts. Extreme
heatis one of myriad climate impacts and the costs we assess are large.
As science advances and new hazard models, damage functions and
climate impacts estimates are developed, such as extreme rainfall'®®
or EINifio'?, these costs could be incorporated into a fuller account-
ing of climate damages attributable to emitters. Given the flexible,
open-source nature of RCMs and the maintenance of pre-existing
pattern-scaling libraries”™, such damage estimates can be easily ported
into our framework to provide a more complete documentation of
the costs attributable to particular emitters. On the other hand, some
injuries motivating suits, such as the adaptation costs incurred by a
municipality for local sea-level rise, could require cost assessment
approachesthatare not only reliant onglobally derived damage func-
tions. In those cases, our emitter-based attribution framework can
potentially provide quantitative estimates of how the hazard hasbeen
altered by particular emitters, but other mixed-methods approaches
couldbe used to connect those estimates to the specific choices facing
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local decision-makers. The framework we advance here is flexible and
its potential applications are broad.

Performing coordinated, near-real-time, end-to-end attribution
following events would allow communities to understand the contribu-
tions ofindividual actors to the losses they suffer. Scientific enterprises
such as the World Weather Attribution® could be extended to include
end-to-end attributionin their workflow or could be amodel foranew
scientific body centred on assessing causation in climate impacts.
Recent calls to operationalize extreme event attribution for loss and
damage debates have been motivated by the consensus methods that
have been developed for event attribution®®. And just as event attribu-
tion has moved fromascientific thought experiment to the mainstream
over the past 20 years, the same could be true of end-to-end attribution.
Astandingscientificbody would be an essential resource for courts and
citizens, providing tailored end-to-end attribution analyses, translation
and, potentially, expert testimony, responsibly informing the coming
wave of litigation to ensure claims use the best available science.

A key area for future collaboration among attribution and legal
scholars concerns shared evidentiary standards. Frequentist statisti-
cal practices common in scientific studies (for example, ‘P < 0.05")
may not be appropriate for climate liability cases for several reasons.
First, they set the bar for evidence higher thanlegal standards such as
‘more likely than not™. Moreover, significance testing can be abused
and misinterpreted™, its thresholds are generally arbitrary™ and such
testing provides a poor characterization of uncertainty'®. Here we have
chosen to present the range of outcomes and damage estimates pos-
sible given uncertainties in the causal chain from emissions toimpact.

Other scientificapproachesinattributionscience, such as‘storylines’,
could helpreconcile epistemic differences between the legal and attri-
bution communities and reduce the need for end-to-end attribution to
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specificharmsin each case. Storylines are anarrative-driven attribution
approach using conditional assumptions, often about the dynamics
underpinning anextreme event, to assess the thermodynamic contribu-
tions of global warming. Storylines emphasize deterministic rather than
probabilistic characterizations of causality'” and thus complement the
application of our end-to-end attributions of individual events, such
as floods or tropical cyclones—an area for future work. Our present
analysis reflects the primacy of ‘but for’ causation in existing legal
frameworks, but as climate impacts grow and cases advance, the evo-
lution of legal approaches to causation could allow other attribution
approaches to become sufficient for legal standing"®. Complemen-
tary and simultaneous development of several approaches is the most
effective way for the scientific and legal communities to evaluate the
growing evidence for climate liability*.

The validity of the scientific case for climate liability does not mean
that claims will succeed in court. Essential questions remain, such as
the period over which emissions should be counted. That fossil fuel
companies have predicted climate change and its consequences for
decadesimplies a potential ‘duty of care’ violation, meaning that those
companies could be liable for emissions occurring before the consen-
sus on climate change emerged™. Research using archival methods'?,
computational frame analysis' and interviews'? has documented the
disconnect between the internal and public communications of fossil
fuel companies. Advances in this area could add credibility to climate
liability cases. Ultimately, however, accounting and framing choices
reside beyond the scope of science—they must be made by legal teams
anddecided by judges andjuries. Other legal barriersinclude legislation
such as the US Clean Air Act, which may displace federal common-law
claims'®, or courts’ perception that these cases inappropriately inter-
vene in policymaking'®.

Moreover, despite the harm arising from extreme heat, fossil fuels
have also produced immense prosperity. We do not assess the economic
benefits from fossil-fuelled energy, for which these companies have
already been handsomely paid. Courts may need to consider how the
benefits of energy use are balanced against its externalities and the
potential duty of care these companies have to the public'®. Recent
alternatives tolitigation, such as ‘polluter pays’bills that draw on super-
fund and loss and damage logic, are advancing in state legislatures
around the USA. Thefirst one, passed in Vermont'®, suggests that some

T T T T
20 1850 1977 1990
Emissions start year

5% contribution to global emissions, when that contributionis assessed
startingin1850 (asina), 1977 or1990 and ending in2020 in all cases. Shading
showsIPCC uncertainty ranges across 10,000 simulations,asinFigs.1land 2.

lawmakers see a clear distinction between the benefits and harms of
fossil fuels and can evaluate themindividually. Climate damages are a
negative externality from fossil fuels not reflected in the current value
of these companies. This disconnect is particularly strong given that
these externalities have fallen most severely on the poorest people
across the globe—those who have benefited least from fossil fuels
or have been exploited for its extraction'”. More broadly, just as the
benefits of a medication do not absolve a manufacturer who fails to
warn its customers about side effects, it is clear that the benefits of
fossil fuel use should not absolve carbon majors of liability for these
devastating externalities®.

As climate disasters accumulate, courts will see more and more cli-
mate cases. Formalizing communication and education between the
scientific and judicial communities is vital, ensuring that science is
useful and that courts recognize its limits. Alongside these efforts,
new legal theories and the urgent press of climate disaster could spur
courts to embrace climate liability claims™®, The next 20 years will
bring greater clarity on these remaining questions. Here we provide
anessential start: the development of arigorous, flexible, transparent
and widely applicable end-to-end attribution framework.
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Methods

Our end-to-end attribution integrates model experiments with three
steps: (1) emissions to warming; (2) warming to hazards; and (3) haz-
ards to damages. For the first step, we use a RCM, which translates
emissions into global temperature change, reconciling the carbon
cycleand climate response uncertainty (see ‘Step 1: FalR simulations’).
For the second step, we use a statistical model that translates global
temperature change into local changes in the hottest five days of the
year (see ‘Step 2: pattern scaling’). For the last step, we use an empiri-
cal model that estimates the marginal economic damage of the five
hottest days of the year (see ‘Step 3: damage function’). Different sets
of emissions data could be included in step 1, other hazard models
couldbe portedinatstep2and other damage models could be usedin
step 3, suggesting the flexibility of the framework.

Step 1: FalR simulations

We use the FalR emissions-driven RCM to quantify the contributions
ofindividual emitters to GMST change. FalR takes input time series of
greenhouse gas emissions and natural climate forcings, simulates the
carbon cycle and radiative forcing response and calculates resulting
warming, providing an output time series of GMST. All FalR simulations
arerun from1750 to 2020.

For each company, our analysis requires comparing three experi-
ments: in the first experiment, we run FalR in a ‘natural’ scenario, with
only naturally occurring historical forcings, such as solar variations
andvolcaniceruptions, preserved. This experiment calculates the time
series of GMST in a counterfactual world with no human greenhouse
gas emissions. In the second experiment, we run FalR in a ‘historical’
scenario, inputting both total historical human-caused emissions as
well as the natural forcings to calculate the GMST we have experienced
fromobserved historical forcing. The difference between the ‘historical’
and ‘natural’ FalR simulations provides a time series of the change in
GMST attributable to historical human-caused emissions and allows us
tovalidate the skill of our simulations. Our simulations are skilful, repro-
ducing the experimental results from the Detection and Attribution
Model Intercomparison Project’”” (DAMIP) run with the fully coupled
Earth system models participating in the sixth phase of the Coupled
Model Intercomparison Project'?® (CMIP6). The IPCC best estimate
of human-induced warming over 2010-2019 relative to 1850-1900
is1.07 °C, with alikely (66%) range of 0.8-1.3 °C (ref. 128). The results
from our FalR simulations are consistent with this estimate, with an
average warming in 2010-2019 relative to 1850-1900 of 1.05°C and a
66% range of 0.89-1.23 °C.

Our third experiment is performed for each emitter separately. This
experiment has the same protocol as the ‘historical’ experiment but
this time we remove the emissions from a single company from total
emissions. This ‘leave-one-out’experiment provides the counterfactual
time series of GMST in which the chosen company did not emit. The
difference between the time series of ‘historical’ and ‘leave-one-out’
GMST provides a time series of the change in GMST attributable to a
single emitter.

A‘leave-one-out’ experimental design does not consider socioeco-
nomic consequences of counterfactual emissions, only thermodynamic
ones. Thus, our counterfactual approach is agnostic about whether a
‘leave-one-out’ framing implies that the fossil fuel production itself
never took place (with opaque and unpredictable market and produc-
tion implications) or whether it is analogous to a scenario in which
a company instead took steps to mitigate or remove the emissions
associated with their fossil fuel production.

Each company’s emissions are time series of carbon dioxide and
methane emissions—representing scopeland scope 3 emissions from
fossil fuel production—drawn from data from the Carbon Majors data-
base'®’; we use all available years of emissions data for each company.
We exclude actors from the database that are listed as nation states,

using only investor-owned companies or state-owned enterprises.
Not all companies have data spanning the same number of years as
companies were incorporated at different times, but we use all available
emissions datato avoid artificially constraining our analysis. Extended
DataTable1showstheyears over which emissions dataare available for
the top five emitting companies in our data. Similarly, for the experi-
ments for all 111 companies in our data or the groups of investor-owned/
state-owned companies, we use all available data for each company
regardless of start date.

To sample carbon cycle and radiative forcing uncertainties, we
perform each of the above FalR experiments 1,001 times, providing a
large, perturbed-parameter ensemble for each experiment. The 1,001
parameter combinations were developed as part of the IPCC Sixth
Assessment Report'®. Our1,001-member FalR parameters are asubset
of alarger parameter set of 1.5 million, which was then constrained
to be consistent with fully coupled CMIP6 Earth system models. We
therefore run 1,001 simulations for the ‘natural’, ‘historical’ and each
‘leave-one-out’ experiment, sampling each parameter set for each
company. These simulations provide a distribution of GMST changes
attributable to each company for eachyear, inwhich the range in values
is attributable to uncertainties in the carbon cycle and the response
of warming to forcing. These parameter sets were downloaded on 13
September 2023, with further information available at the following
URL: https://docs.fairmodel.net/en/latest/examples/calibrated_con-
strained_ensemble.html.

Step 2: patternscaling

The scale of our damages analysis is the subnational region, equiva-
lent to states in the USA or provinces in Canada. This is the scale at
which heatwaves have been found to affect economic growth® (in
contrast to the country-level approach of previous studies®*#*, a finer
spatial scale is necessary to account for the effect of heatwaves).
Following previous work, heatwaves are defined here as the five hot-
test daysineach year (denoted ‘Tx5d’), although other heat metrics
could be used.

To quantify the effects of carbon majors’ emissions on local extreme
heat, itisnecessary tolink changesin GMST provided by the FalR simu-
lations to regional changes in Tx5d. Motivated by the strong linear
relationship between GMST change and local extreme heat’®, we use
pattern scaling to calculate changes in Tx5d in each region as a linear
function of GMST change. To do this, we use the ‘hist’ and ‘hist-nat’
experiments conducted as part of the DAMIP protocol for CMIP6,
which are the fully coupled analogues to our ‘historical’ and ‘natural’
FalR experiments. For each participating model and each experiment,
we calculate regional Tx5d. Next, we take the difference between the
‘hist’ and ‘hist-nat’ experiments in both GMST and regional Tx5d over
the 1991-2020 period to calculate anthropogenic changes in those
quantities. We then linearly regress the time series of anthropogenic
Tx5d change onto the time series of anthropogenic GMST change for
each region to yield a pattern-scaling coefficient that represents the
sensitivity of local Tx5d change to GMST change in units of “degree of
regional Tx5d change per degree of GMST change”. Multiplying these
coefficients with the company-level sets of FaIR simulations that pro-
vide the GMST change attributable to each emitter yields the Tx5d
change owing to each carbon major in each subnational region (Fig. 1c).
We use 1991-2020 as the time period of this analysis to match the time
period of the damages analysis.

We perform this local pattern-scaling regression separately for
each of 80 CMIP6 climate model simulations, specifically those that
have hist and hist-nat simulations available for daily high surface air
temperature (‘tasmax’) and monthly mean air temperature (‘tas’).
For CMIP6, eight distinct models are available, but we use as many
ensemble members for each model as possible. This choice allows us
tosample uncertainty from both model structure (thatis, uncertainty
across models) and internal climate variability (that is, uncertainty
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across realizations within aninitial-condition ensemble of each model).
Previous work showed that internal climate variability can form an
important component of uncertainty in local attributable damages®
and we explicitly incorporate this uncertainty in the pattern-scaling
step of our analysis.

The choice to use many ensemble members from a single model
means that some models are overrepresented in this ensemble but
ensures that we are sampling pattern-scaling uncertainty owing to
both model structure and internal climate variability. When we per-
form our final Monte Carlo uncertainty assessment (see ‘Uncertainty
quantification’), we adjust the model sampling probabilities so that
models with fewer realizations are equally likely to be sampled as mod-
els with more®.

Step 3: damage function
We use adamage function that relates changesinlocal Tx5d to changes
inGDPpcgrowth (‘economic growth’) insubnational regions. This func-
tion was derived following peer-reviewed methods of ref. 89, using a
panel regression of observed Tx5d and observed GDPpc growthin a
global sample of regions over 1979-2016, isolating the causal effect
of year-to-year changes in extreme heat from other geographic or
time-trending correlates.

Specifically, we use the coefficients from the following regression
estimated using ordinary least squares:

g, =T+ szTitz +ﬂ1TX,-t + (ﬁszit XTy) + Y Vie + (Vzl/it xA;)

+TP+ +6,+ €,

where g refers to economic growth in region i and year ¢, T refers to
annual mean temperature, Tx refers to Tx5d, Vrefers to temperature
variability, A refers to annual cycle of temperature, Prefers to tempera-
ture, u;isaregion fixed effect that removes all time-invariant regional
average characteristics and 6, is a year fixed effect that removes all
global shocks that are common to a given year. The coefficients of
interest are f3;, which denotes the effect of Tx5d when the mean tem-
peratureis 0,and 3,, which denotes the change in the effect of Tx5d as
the mean temperature increases. Marginal effects of Tx5d are shown
in Fig. 1d. We include the terms for temperature variability (V) and
the annual cycle (A) following ref. 129. Specifically, they allow us to
distinguish the impacts of temperature extremes from the impacts
of within-year temperature variability, which may be independently
damaging.

The estimated effects of Tx5d on economic growth are spatially het-
erogeneous, with negative effects of extreme heat in warm regions
(regions with annual mean temperature above about 14 °C) but negli-
gible or positive effectsin cool regions. The disproportionate negative
effect of marginal changesin Tx5d inwarmtropical regions could occur
as aresult of both their underlying warmth, which may place them
closer to physiological thresholds for human health or agriculture,
aswell as the lower income in tropical regions, which may make them
more economically vulnerable to climate stress. Uncertainty in these
subnational damage function coefficients is estimated by bootstrap
resampling the regression, producing a distribution of 1,000 coef-
ficients that reflects sampling uncertainty in our estimates.

Tx5dis only one of the many ways to measure extreme heat™°, Other
metrics based on the temperature of hot periods include the hottest
day™, hottest seven days™ or hottest month®. In previous work®’, we
showed that all of these measures have broadly similar damage func-
tions, but that Tx5d has the clearest economic effect among them,
potentially because it is the best geophysical measure of the synoptic
timescale of most heat events.

Analternative approachis to define location-specific or time-specific
thresholds, above which heat is termed ‘extreme’ and can be accumu-
lated over time, similar to the ‘degree day’ metrics used in many agri-
cultural applications. In the climate-economic context, an example of

thisisref. 106, in which the authors use cumulative measures of extreme
heat above a threshold to examine economic impacts of historical
heatwaves. Such cumulative metrics have the advantage of incorpo-
rating several heat events over the course of a year and the varying
duration of those events. On the other hand, they require researchers
to make several arbitrary choices: what threshold is chosen, whether
that threshold is relative to a day of year, month or season, whether
extreme heat has equivalent effects in spring or fall as in summer and
soon. We believe that the simplicity and transparency of our approach
hasadvantagesin thisemerginglegal context. More complex metrics
ofextreme heat or other events are a fruitful target for future research.

Because our framework is flexible and modular, it can accommodate

more complex or tailored metrics of heat, other extremes and other

hazards as needed.

To assess heat-driven damage attributable to individual emitters,
we integrate the three steps outlined above, calculating economic
changesinthe ‘historical’ and ‘leave-one-out’ scenarios for each com-
pany, relative to the ‘natural’ scenario, which only includes solar and
volcanic forcing. We perform the following:

1. First, we calculate the change in each region’s Tx5d values owing to
the difference in Tx5d between the pattern-scaled FalR ‘historical’
(or‘leave-one-out’) simulation and the pattern-scaled FalR ‘natural’
simulation. This difference is then subtracted from the observed,
real-world time series of Tx5d for each region, providing counter-
factual subnational annual-scale time series of Tx5d. Thiscommon
‘delta method’ ensures that the Tx5d differences are benchmarked
tothe observed climate, both tobias-correct the model predictions
and to impute realistic timing to interannual variability.

2. The difference between observed and counterfactual Tx5d is then
multiplied by the damage function coefficients to calculate achange
ineachregion’seconomic growth, owing to the change in Tx5d bet-
ween the ‘natural’ and ‘historical’ or ‘leave-one-out’ experiments.

3. We then add this difference in economic growth to observed eco-
nomic growth. This provides a counterfactual trajectory of economic
growth consistent with the included emissions. Higher counterfac-
tual economic growth values than those observed in the real world
implies damages from emitter-driven Tx5d changes—thatis, aregion
would have grown faster but for the effect of the extreme heat attri-
butable to the included emissions.

4. We then put these economic changes in dollar terms by taking these
counterfactual economic growth time series from each emitter and
reintegrating each region’s GDPpc time series. Further details on this
procedure areavailableinrefs. 88,89. We now have, for eachregion,
atime series of per capita GDP damages in the historical world and
atime series of per capita GDP damages in a world with one emitter
removed.

5. Finally, we take the difference between the historical damage esti-
mate and the leave-one-out damage estimate to calculate the contri-
butions of individual companies. Further details on this procedure
are availableinref. 53.

The effect of extreme heat on economic growth is not permanent.
In previous work®’, we observed a rebound effect in which economic
growth accelerates in the years following heatwaves—for example,
as crops are resown or people return to work. From a distributed lag
model based on equation (1), in which we add lags of each term to assess
their effect over time, we find that this effect seems to last 3 years.
Neglecting such a rebound effect could lead to overestimates of the
effect of heatwaves on long-term growth. We therefore account for
thisrecoveryin our damage estimates, allowing Tx5d changes to affect
both contemporary and future economic growth such that no single
heatwave has a permanent effect.

Furthermore, because changes in annual mean temperature mod-
erate the effect of Tx5d change, we perform a similar pattern-scaling
analysis with regional annual mean temperature. Following previous
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work, the final damages calculations incorporate both changes in Tx5d
itself as well as changes in the underlying annual mean temperature
values that moderate the effect of Tx5d (ref. 89).

Predicting regional income

Our analysis requires continuous GDPpc time series order to inte-
grate counterfactual economic growth and calculate counterfactual
income. Many regions around the world, especially those in the poor-
est and warmest areas of the tropics—those that are most strongly
affected by extreme heat—do not have such subnational data available,
making it difficult to assess the impacts of climate change in those
regions. To fill this gap, we extend the regional GDPpc prediction
procedure outlined inref. 89 to predict subnational GDPpc from the
period 1991-2020.

This procedure takes three inputs: country-level GDPpc data from
the World Bank World Development Indicators, gridded nighttime
luminosity data from satellites and subnational GDPpc (from the
regions in which such data are available) from the MCC-PIK Data-
base Of Sub-national Economic Output (DOSE) dataset collected
by Wenz et al.’*>, We estimate a multiple regression model in which
observed regional GDPpc is regressed on the corresponding coun-
try’s GDPpc, regional average nighttime luminosity and their inter-
action®™*. (To perform this procedure over the period 1991-2020,
we linearly extrapolate regional nightlights beyond their original
1992-2013 time boundaries). This regression model skilfully explains
variationinregional GDPpc, with an R?of approximately 0.9, and has
performed well in out-of-sample cross-validation tests®’. We then
predictregional GDPpcintheregionsinwhichitis notavailable, using
the country-level GDPpc and nightlights datain these regions. There
are some countries for which the relationship between national and
regional GDPpc seems abnormal, specifically Uzbekistan and Kenya,
sowedrop these countries from the final data construction (see Sup-
plementaryFig. 8 of ref. 89).In other countries, such as Afghanistan,
even country-level GDPpc dataare not continuously available across
the 1991-2020 analysis time period. In both cases, white regions in
Fig. 2 show the areas for which GDPpc data are not available in the
final analysis.

We use the US GDP Deflator to correct for inflation and convert each
dollar to 2020-equivalent dollars.

This procedure inherently introduces uncertainty in our final esti-
mates and we sample this uncertainty in two ways following ref. 89.
First, we bootstrap the multiple regression model 250 times, resa-
mpling by country with replacement to account for within-country
autocorrelationingrowth. Second, in each bootstrapiteration, we add
random noise to the predictions withamplitude equal to the standard
deviation of the estimation model’s residuals. This procedure ensures
that the uncertainty fromthis prediction procedureis reflected in our
final damage estimates.

We emphasize that we do not use these GDPpc reconstructions in
the original regression estimates that produce the damage function,
onlyinthe process of calculating absolute GDPpclosses from changes
ineconomic growth.

Event-specific estimates

To quantify the influence of carbon majors on damages from specific
events, we use a similar method asin our main analysis. The key differ-
enceisthat weonly calculate the damages from the change in Tx5d and
average temperature inthe year of the event. In practice, this means that
we set the Tx5d and average temperature values in the leave-one-out
simulation equal to the observed values in all years, except the year
of the event. For example, we calculate damages for India in 1998 by
setting the historical and leave-one-out Tx5d and temperature values
to be exactly the same as the observed values, except for in 1998. We
then repeat our damage calculation, with damages only being pro-
duced by the climate change in 1998 and not any other year. We also

note that these heatwaves happen to coincide with the Tx5d in each
case we present. We would not always expect that to be the case, as
damaging heatwaves may not always include the five hottest days
of the year. Indeed, even in the cases we present, five days may not
encompass the full duration of the heatwave; for example, the 2010
Russian heatwave occurred over several weeks inJuly. However, previ-
ous analysis showed that extending the time window of the analysis,
suchas using the hottest 15 daysinstead of the hottest five, yields very
similar answers®. Other heat metrics or approaches may be appro-
priate for other events that do not occur during the hottest parts of
theyear.

Asdescribed above, heatwaves produce aneconomicreboundinthe
yearsfollowing the event. Thus, we continue toaccount for the economic
recovery in these single-event estimates by allowing Tx5d changes to
affectgrowthin theyear of the event, as well as the 2 years following it.
When we present country-level damage estimates for these individual
events, we sum damages across all regions in the chosen country for
that year and the 2 years following. For example, for Indiain 1998, the
damage estimates presented in Fig. 3 representlosses in1998,1999 and
2000, induced by the1998 heatwave, before India catchesback up toits
original economic trajectory in 2001 and damages are zero thereafter.
For the USA in 2012, we exclude Hawaii and Alaska from this calculation,
to calculate damages only for the contiguous states of the USA.

Uncertainty quantification

Our damage calculationsreflect uncertainty from the FalR simulations,
patternscaling, damage function estimates and regionalincome predic-
tion. To propagate these uncertainties into our final estimates, we use a
Monte Carlo approach, sampling uncertainty with 10,000 iterations. In
eachiteration, we sample one of the 1,001 FalR simulations, one of the
80 climate model estimates of the pattern-scaling coefficients (keeping
allregional coefficients together from a single climate model), one of
the 1,000 damage functions from the bootstrap estimate and one of
the 250 regional GDPpc predictions.
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Perspective

Losses from top five
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Extended DataFig.1|Damages when annual average temperatures are the effect of Tx5d. Map was generated using cartopy v0.17.0 and regional
held at their observed values. Asin Fig.2abut when emissions only affect the borders come from the Database of Global Administrative Areas.
intensity of Tx5d values and not the annual average temperatures that moderate



Extended Data Table 1| Availability of emissions data for the top five companies

Firm Name  Headquarters StartYear End Year
Saudi Aramco  Saudi Arabia 1938 2020
Gazprom Russia 1989 2020
Chevron United States 1912 2020
ExxonMobil United States 1884 2020
BP United Kingdom 1913 2020

This table shows the name (first column), country of headquarters (second column), first year of available emissions data (third column) and last year of available emissions data (fourth column)
for the top five emitting companies in our data. Data are from the Carbon Majors database'®, based on work in ref. 62.
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