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Carbon majors and the scientific case for 
climate liability

Christopher W. Callahan1,2 ✉ & Justin S. Mankin1,2,3,4 ✉

Will it ever be possible to sue anyone for damaging the climate? Twenty years after this 
question was frst posed, we argue that the scientifc case for climate liability is closed. 
Here we detail the scientifc and legal implications of an ‘end-to-end’ attribution that 
links fossil fuel producers to specifc damages from warming. Using scope 1 and 3 
emissions data from major fossil fuel companies, peer-reviewed attribution methods 
and advances in empirical climate economics, we illustrate the trillions in economic 
losses attributable to the extreme heat caused by emissions from individual 
companies. Emissions linked to Chevron, the highest-emitting investor-owned 
company in our data, for example, very likely caused between US $791 billion and 
$3.6 trillion in heat-related losses over the period 1991–2020, disproportionately 
harming the tropical regions least culpable for warming. More broadly, we outline a 
transparent, reproducible and fexible framework that formalizes how end-to-end 
attribution could inform litigation by assessing whose emissions are responsible and 
for which harms. Drawing quantitative linkages between individual emitters and 
particularized harms is now feasible, making science no longer an obstacle to the 
justiciability of climate liability claims.

Once climate attribution emerged as a field of inquiry, scholars both 
scientific1 and legal2 raised questions about whether climate liabil-
ity claims could be pursued through common law3. Extreme weather 
events—floods, droughts, extreme heat and more—upend lives, under-
mine livelihoods and damage property. If such extremes could be linked 
to climate change, the logic goes, injured parties could seek monetary 
or injunctive relief through courts1. Over the past two decades, science 
and law have been engaging a set of challenges that take climate liability 
from a thought experiment into a realistic practice.

Scientifically, the focus has been on developing standardized meth-
ods to codify a scientific consensus on the role climate change plays in 
amplifying extreme events, as reflected in the Sixth Assessment Report 
of the Intergovernmental Panel on Climate Change (IPCC)4. Such ‘con-
sensus’ methods are widely accepted and used in the scientific com-
munity, having been applied in peer-reviewed publications to a variety 
of events5–7 from heatwaves8,9 to droughts10,11, floods12, hurricanes13,14 
and wildfires15. This science has advanced such that events are now 
attributed in near real time16,17 or in advance using forecast models18. 
As courts rely on scientific syntheses from organizations such as the 
IPCC19, the consensus developed around event attribution methods20 
suggests that they could meet legal standards for admissibility21. By 
revealing the human fingerprint on events previously thought to be 
‘acts of God’, attribution science has helped make climate change legally 
legible22–24.

Legally, a focus has been on assessing whether climate attribution 
is compatible with existing causation and standing frameworks. More 
than 100 climate-related lawsuits have been filed annually since 2017; 

many more will come. The legal theories forming the basis for these 
cases vary widely, shaping who is liable and for what conduct25. For 
example, some cases seek to accelerate climate policy under the theory 
that people have the right to climate stability26. Others use agreements 
such as the Energy Charter Treaty to stymie climate action27. Some 
cases centre on the disinformation and climate denialism allegedly 
fomented by fossil fuel companies28, whereas others contend that 
companies have failed to adequately disclose climate risks to inves-
tors29. Other climate-related cases fall outside these categories and 
new legal theories will continue to emerge.

Here we focus on the theory that people can hold emitters liable for 
the damage caused by warming1,30. Such cases mirror efforts to hold 
industries such as tobacco31 and pharmaceuticals32 liable under legal 
standards such as the duty of care, public nuisance, failure to warn or 
strict liability. Because of the broad financial, legal and climatic implica-
tions of these suits33, assessing the scientific support for their claims 
is critical. Although these cases—similar to disinformation-focused 
cases—use evidence that fossil fuel companies have long been aware 
of climate change, they specifically attempt to link these companies 
to the human costs of their emissions. For example, an Oregon county 
has sued several fossil fuel companies for amplifying the 2021 Pacific 
Northwest heatwave and its resulting economic and health costs34. New 
York City and Rhode Island have brought similar claims35,36. Companies 
such as ExxonMobil are a frequent target, with plaintiffs ranging from 
residents of flooded Alaskan villages to Puerto Rican municipalities 
damaged by hurricanes Irma and Maria37,38. Although attribution sci-
ence is relevant to wider climate policy, accountability and justice, it 
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is particularly helpful to this theory of liability, as both initial standing 
questions and the merit stages of cases may require plaintiffs to show 
causal linkages between emitters and particularized injuries.

The fate of climate liability cases remains uncertain: success, failures 
and appeals abound. In 2015, the nonprofit Urgenda Foundation won a 
key ruling that the Dutch government breached its constitutional duty 
of care by not reducing emissions39. More recently, a court ruled that 
Montana’s efforts to deregulate emissions violated its residents’ right 
to a healthy environment40. By contrast, New York’s case against five 
fossil fuel companies was dismissed in 2018 on the grounds that judges 
should not make climate policy. As cases laboriously wind their way 
through courts around the world, litigation shows no signs of slowing25. 
And as extreme events intensify and losses accumulate—and as political 
action on climate change lags the urgency of the crisis—more people are 
turning to the legal system for relief25. There is talk of a “coming wave 
of climate legal action” for which courts are woefully unprepared41.

Here we illustrate how climate attribution that goes from emissions to 
impact at the corporate scale is now possible, addressing a substantial 
hurdle to climate liability. Using peer-reviewed methods, we estimate 
the economic losses resulting from the extreme heat caused by emis-
sions from major fossil fuel companies (‘carbon majors’) over the period 
1991–2020. We present two actionable approaches for the end-to-end 
attribution framework: one considering the accumulated harms from 
a hazard, such as heatwaves over 1991–2020, and another considering 
the harms from a specific event, such as the 2003 European heatwave. 
The cumulative and event-specific approaches can be applied to myriad 
scales of emitters and claimants, and extended to different classes of 
hazards, from heatwaves as here, to floods, droughts, sea-level rise 
and more. We also show how each approach can be applied in a way 
that is agnostic about any particular emitter, allowing communities 
to assess responsibility for losses, rather than naming parties prima 
facie. We argue that, although this type of end-to-end attribution will 
provide clarity in some respects, the ultimate question of whether 
climate liability is justiciable will be resolved in courts. More widely, we 
advocate for the creation of a transparent and objective science-based 
initiative to provide peer-reviewed and reproducible attributions and 
expert testimony to ensure that courts can evaluate these emerging 
legal claims.

Attribution science and causation
To sue over an injury, a litigant typically must demonstrate a causal 
connection between the action of the defendant and the plaintiff’s 
injury, sometimes through meeting a ‘but for’ standard: “but for the 
actions of the defendant, the plaintiff would not have been injured”2. 
Demonstrating ‘but for’ causality in the context of climate impacts is 
difficult2: atmospheric carbon dioxide is well mixed and many par-
ties have emitted; emissions and impacts are dislocated in space and 
time42; the causal chain from emissions to impacts is nonlinear43; and 
uncertainties compound from emissions, to warming, to hazards, to 
impacts44. Such causal ambiguity is not unique to the climate. It is a 
feature of assessing liability for environmental hazards more widely, 
which has led to a tiered legal strategy of establishing both ‘general’ 
and ‘specific’ causation45. General causation assesses whether a hazard 
could cause a type of harm, such as the way asbestos increases cancer 
risk. It is often held to a high standard of scientific certainty46. Specific 
causation, on the other hand, considers whether a defendant’s actions 
caused the particular injury to the litigant: whether a specific worker’s 
cancer was caused by asbestos in their workplace, for example. In some 
jurisdictions, specific causation is held to a less strict ‘more likely than 
not’ standard45.

Resolving causality in climate liability could take many forms beyond 
establishing ‘but for’ causation. We can, for example, assign liability pro-
portionally according to emitters’ contributions to total emissions47,48, 
using deductive storyline-type approaches about how emissions-driven 

warming has shaped particular types of climate impacts49 or based 
on the social cost of carbon50,51. These approaches alleviate the need 
to show that the injury would not have occurred without a specific 
emitter’s contribution and is generally consistent with the original 
formulation of climate liability: if global warming has tripled the risk 
of a flood, then warming is responsible for two-thirds of its risk, making 
contributors proportionally liable for two-thirds of its harm1. Such a 
philosophy accords with the extreme climate event attribution field, 
which links the risk or magnitude of an event to global warming. How-
ever, proportional contributions to global warming may not translate 
into equivalent contributions to particularized injuries. Nonlinearities 
among warming, climate extremes and people imply that the same 
emissions can have different effects at different times52, and cascad-
ing uncertainties mean that the signal of an individual emitter may 
not rise above the noise in a complex climate system53. Furthermore, 
some jurisdictions have limited the application of market-share liability 
theories54 and courts may be reluctant to accept this approach in place 
of more traditional ‘but for’ causation standards2.

Such realities clarify the need to scientifically demonstrate ‘but for’ 
causation, specifically the linkage between an individual emitter and 
a particular injury. The lack of end-to-end attributions has been cited 
as a barrier to climate litigation2,22,55,56 and has been used by fossil fuel 
companies to argue that plaintiffs lack standing to sue over climate 
damages57. As a result, despite the important role for existing attribu-
tion science in informing approaches such as proportional liability, 
scientific approaches that demonstrate causal linkages from emitters 
to impacts have been termed the Holy Grail of climate litigation56.

Advances enabling end-to-end attribution
Despite these challenges, two recent advances make end-to-end climate 
attribution possible. First, physical science can more confidently con-
nect individual emitters to local climate change. Second, social science 
can more confidently connect local climate change to socioeconomic 
outcomes.

For the first, ‘source attribution’ research58 has linked emissions 
from countries59–61 and carbon majors62 to increases in global mean 
surface temperature63 (GMST), sea-level rise63, ocean acidification64 
and local extreme climate events65–67. Source attribution often uses 
an emissions-driven climate model to simulate historical climates and 
counterfactual climates, in which the latter is the same as the former, 
save for the removal of one emitter’s time-varying emissions (that is, 
a ‘leave-one-out’ experiment). The difference between the two simula-
tions represents the contribution of the removed emitter, providing 
a test of ‘but for’ causation2: but for the emissions of this actor, the 
climate would have been thus. We could perform these simulations 
with a coupled Earth system model68, but such models are opaque and 
computationally expensive. A computationally tractable approach is 
to use reduced-complexity climate models (RCMs) that accurately 
simulate the behaviour of the Earth system using a smaller number 
of equations.

RCMs69–72 have long been part of the consensus methods used in 
IPCC Assessment Reports73 for purposes such as simulating mitigation 
pathways74. More recently, RCMs have been applied to source attribu-
tion for tasks such as simulating country-level contributions to global 
mean temperature change50,53. RCMs are zero-dimensional, lacking 
spatial information. But peer-reviewed methods such as pattern scal-
ing75–77 provide robust statistical relationships between global and local 
climates that allow scientists to estimate local temperature change on 
the basis of RCM output78. Together, RCMs and pattern scaling link the 
contributions of individual emitters to local temperature changes in 
an efficient, transparent and reproducible manner50,53,67.

However, local climate changes do not inevitably imply particularized 
injuries. To connect individual emitters to impacts, researchers must 
quantify the human consequences of local climate changes. Enter the 
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second notable advance: more robust quantifications of the socioeco-
nomic impacts of climate change79. Recent peer-reviewed work has used 
econometrics to infer causal relationships between climate hazards and 
outcomes such as income loss79, reduced agricultural yields80, increased 
human mortality81,82 and depressed economic growth83–85. In the attribu-
tion context, these causal relationships have been applied to quantify 
the historical costs of flooding86, crop losses87 and reduced economic 
output from increases in average88 and extreme89 temperatures. These 
methods are also consensus-based, reflected in synthesis reports such 
as the US government’s Fifth National Climate Assessment90.

Although the ‘fraction of attributable risk’ metric is another 
consensus-based attribution approach applied widely to extreme 
events and their impacts91–95, it is not necessarily suitable for quan-
tifying the influences of climate change on people, which are often 
nonlinear and can depend on event intensity rather than probabil-
ity43,96–98. Approaches that better resolve hazards and costs are helpful 
to directly connect greenhouse gas emissions to socioeconomic losses. 
For example, Strauss et al.99 relied on hydrodynamic modelling and 
property damage estimates to quantify the anthropogenic contribu-
tion to damages from Hurricane Sandy in New York, an approach more 
tailored and nuanced than the fraction of attributable risk. Our more 
generalized framework uses econometric dose–response functions 
that parameterize relationships between climate hazards and human 
outcomes, but it could easily be adapted to other settings, such as 
flooding from a particular storm.

Here we show that emissions traceable to carbon majors have 
increased heatwave intensity globally, causing quantifiable income 
losses for people in subnational regions around the world. Our analysis 
uses reductions in gross domestic product per capita (GDPpc) growth 
to represent particularized injuries, consistent with recent suits in 
Oregon34 and several Puerto Rican municipalities37. Both of these cases 
cite the severe economic burden associated with extreme climate 
events, so scientific attribution of that claim is potentially valuable, 
even if it does not fully resolve the precise damages in those cases. 
However, the power of the attribution framework we present is that it 
is flexible, transparent and modular, meaning that other damages (for 
example, adaptation costs based on alternative damage functions), 
other hazards (for example, tropical cyclones) and other time periods 
(whether for emissions or damage accounting) can be included to 
support particular attribution questions as the scientific, legal and 
climatic landscapes develop.

An end-to-end attribution framework
The oil, coal and gas extracted by fossil fuel companies have produced 
substantial emissions of carbon dioxide and methane over the past 
100 years (Fig. 1a). Between 1920 and 2020, Saudi Aramco, Chevron 
and ExxonMobil produced a cumulative total of 16.6, 14.2 and 13.2 GtC 
in CO2 emissions, respectively. Emissions data are drawn from the pub-
licly available Carbon Majors database62,100, which makes use of public 
production information from sources such as company regulatory 
filings, as well as standard emissions factors. These data include both 
scope 1 and scope 3 emissions, which includes emissions from the pro-
duction and combustion of the fossil fuels sold by these companies. 
We note that these emissions ledgers are probably conservative: they 
do not include scope 2 emissions or leaks and spills and are subject to 
underreporting, especially early in the twentieth century62. Although 
we only illustrate emissions since 1920 in Fig. 1, our analysis uses all 
available company-level data (Extended Data Table 1).

To link these companies to specific impacts from their emissions, we 
use a three-step, peer-reviewed, end-to-end attribution framework53 
(Methods). The goal of this framework is to construct a ‘counterfac-
tual’ world in which an emitter’s contribution to local extreme heat 
is isolated and removed. We first use the Finite amplitude Impulse 
Response (FaIR) RCM72 to translate companies’ emissions into GMST 

changes (Fig. 1b). Next, we apply pattern scaling77 to calculate resulting 
subnational changes in extreme heat, defined here as the temperature 
of the five hottest days in each year, or ‘Tx5d’ (Fig. 1c). Last, we apply 
an empirical damage function to calculate income impacts of these 
extreme heat changes89 (Fig. 1d). We compare heat-driven economic 
damages between the historical and counterfactual worlds, with their 
difference being the company’s contribution to damages. Nonclimate 
factors, such as changes in the global oil trade, are held constant. Our 
analysis centres only on the temperature effects of the emissions pro-
duced by carbon majors.

We first simulate historical GMST change using total emissions with 
FaIR v2.1.0 over 1,000 times, sampling parametric uncertainty using 
IPCC-based parameter combinations101. In our counterfactual simula-
tions, we resimulate GMST change after subtracting each company’s 
CO2 and CH4 emissions from global emissions. The difference between 
the observed and each company’s counterfactual simulation represents 
the GMST change attributable to that company (Fig. 1b). According to 
our analysis, for example, Chevron is responsible for about 0.025 °C of 
the >1 °C warming in 2020. We then translate these FaIR-based GMST 
change time series into spatiotemporal patterns of Tx5d change using 
pattern-scaling coefficients estimated from 80 Earth system model 
simulations, showing that, for example, ExxonMobil is responsible 
for a 0.036 °C increase in average Tx5d values over 1991–2020 glob-
ally (Fig. 1c).

Finally, we use an empirically derived damage function that gener-
alizes the relationship between extreme heat intensity and economic 
growth89 to estimate the impacts of company-caused Tx5d changes 
(Fig. 1d). This relationship varies as a function of regional average tem-
perature: tropical regions lose more than 1 percentage point (p.p.) in 
growth for each 1 °C increase in the intensity of the five hottest days 
in each year, whereas temperate regions experience modest effects89 
(Fig. 1d). Although other factors such as sectoral composition and adap-
tive capacity may affect regional sensitivity to extreme heat, average 
temperature has been found to predict that sensitivity more effectively 
than average income, consistent with other work84,102.

We calculate losses in the historical and leave-one-out simulations 
10,000 times for each region using a Monte Carlo approach (Methods), 
taking their difference to calculate losses attributable to the emissions 
from each company. Because changes in annual mean temperature 
shape the impacts of extreme heat, we also pattern-scale regional 
annual mean temperature. Our final calculations incorporate both 
changes in Tx5d itself as well as changes in the average temperatures 
that moderate the effect of Tx5d (ref. 89). As a result, emissions increase 
both the intensity of extreme heat and its marginal damage by raising 
underlying average temperatures. The interaction between mean and 
extreme temperature explains why the pattern of heat-driven losses 
does not simply mirror that of the marginal effects of extreme heat, 
which shows benefits in high-latitude regions89. We also account for 
the economic rebound shown in previous work89, in which the effect 
of extreme heat is recovered after 2–3 years, meaning that we do not 
assume permanent growth impacts of extreme heat.

In this analysis, we focus on the costs resulting from extreme heat as 
represented by Tx5d, rather than combining the total costs across myr-
iad hazards103,104, such as rainfall extremes105 or sea-level rise99. The first 
reason for this choice is legal: so far, litigation has often been motivated 
by a single hazard or high-impact event, such as an Oregon county’s 
suit over the 2021 Pacific Northwest heatwave, probably because of the 
legal imperative to demonstrate specific causality. Although combining 
damages from many hazards would better capture the overall costs of 
warming103,104, it is inconsistent with the specificity that has motivated 
legal claims so far. As legal efforts evolve to consider several hazards or 
a more complete accounting of damages, so too could the attribution 
framework we present here. The second reason is physical: extreme 
heat is robustly linked to global warming78 and has large and direct 
economic costs89,106.
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Heatwave damage from carbon majors
The global economy would be $28 trillion richer (90% (very likely) range: 
12–49, in 2020 US dollars) were it not for the extreme heat caused by 
the emissions from the 111 carbon majors considered here (Fig. 2). To 
provide examples of this attribution, Fig. 2a shows losses attributable 
to each of the top five emitting companies in our data. Saudi Aramco is 
responsible for $2.05 trillion (90% range: 0.85–3.64) in global economic 
losses from intensifying extreme heat and Gazprom is responsible for 
about $2 trillion (90% range: 0.83–3.55). The contributions from these 
two state-owned enterprises are the result of their recent and rapid emis-
sions (Fig. 1a), despite not making large contributions earlier in the twen-
tieth century. Chevron, ExxonMobil and BP have caused $1.98 trillion  
(0.79–3.57), $1.91 trillion (0.77–3.43) and $1.45 trillion (0.59–2.60) in 
losses, respectively (Fig. 2a). Investor-owned companies (for example, 
Chevron, ExxonMobil and BP) and state-owned enterprises (for exam-
ple, Saudi Aramco and Gazprom) are each collectively responsible for 
approximately $14 trillion in losses (Fig. 2b). Ranges in these damage 
estimates arise from carbon cycle and climate uncertainties in the FaIR 
simulations and the parametric uncertainties from the pattern scaling 
and damage function. However, the 99% range for each of the top five 

companies does not include zero (Fig. 2a), making it virtually certain 
that each has contributed to global heat-driven losses.

Losses can also be assessed at finer, more legally relevant regional 
scales, revealing inequities in the causes and consequences of global 
warming (Fig. 2c). Together, extreme heat from the top five emitting 
companies (Fig. 2a) has driven annual GDPpc reductions exceeding 
1% across South America, Africa and Southeast Asia. By contrast, the 
USA and Europe—where Gazprom, Chevron, ExxonMobil and BP are 
headquartered—have experienced milder costs from extreme heat. 
Owing to the dependence of Tx5d damages on mean temperatures, 
mid-latitude regions experience greater heat-driven losses as their 
average temperatures rise; the same holds for higher latitudes, but 
the losses are smaller. If we hold mean temperatures at their observed 
values and instead estimate damages from changes in Tx5d intensity 
alone, the pattern of damages becomes heterogeneous, with mild 
benefits in high-latitude regions rather than mild losses, reflecting 
the pattern of Tx5d marginal effects (see Fig. 2c and Extended Data 
Fig. 1). The gradient of losses increases equatorward irrespective of 
whether we allow mean temperatures to change (Fig. 2c and Extended 
Data Fig. 1), emphasizing the global inequity in extreme heat impacts 
and their spatial dislocation from the emissions that produced them.
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Fig. 1 | Estimated change in global mean temperature and local extreme 
heat by carbon majors. a, CO2 emissions in megatonnes of carbon (MtC)  
per year from the top five emitting fossil fuel companies (‘carbon majors’).  
b, Changes in global mean temperature caused by the cumulative emissions  
of each carbon major. Vertical axis denotes the magnitude of global warming 
resulting from each company in each year. Solid lines show the mean from 1,001 
FaIR simulations, each run with a different calibrated parameter set; shading 
shows the 90% range across the FaIR ensemble. c, Changes in 1991–2020 global 
average subnational Tx5d (temperature of the five hottest days in each year) 
from each carbon major, estimated by combining the FaIR simulations with 

CMIP6-based pattern scaling. Solid line shows the mean and shading shows the 
IPCC uncertainty ranges arising from interacting FaIR and pattern-scaling 
uncertainties. d, Marginal economic effect of increases in Tx5d on economic 
growth in percentage points per degree Celsius (p.p. °C−1) across a range of 
regional annual mean temperature values. Solid line shows the mean estimate 
and shading shows the 90% confidence interval (CI) range, based on the 
observed relationship between Tx5d and economic growth. Positive values 
indicate that cool regions benefit from higher temperatures, whereas negative 
values indicate that warm regions suffer from higher temperatures89.
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We emphasize a cumulative framing of end-to-end attribution, 
noting that an emitter’s impact can encompass several events and 
years. However, much of climate attribution and liability is focused 
on exceptional singular events, such as the 2021 Pacific Northwest 
heatwave107. A flexible end-to-end attribution framework should be 
able to account for individual extreme events as well as cumulative 
exposure. Our approach does this, showing the contributions of carbon 
majors to four historic heatwaves: India in 1998 (Fig. 3a,e), France in 
2003 (Fig. 3b,f), Russia in 2010 (Fig. 3c,g) and the continental USA in 
2012 (Fig. 3d,h). Although each heatwave has been studied extensively 
(for example, refs. 8,9,87,108,109), the contributions of carbon majors 
have not yet been quantified.

Together, the top five companies increased the intensity of the 
five hottest days corresponding to those events by 0.08, 0.11, 0.27 
and 0.09 °C, respectively (Fig. 3a–d), and thus can be associated to 
losses from those events (Fig. 3e–h). For example, Chevron’s emis-
sions are responsible for $1.9 billion (0.31–4.68), $3 billion (0.05–7.05), 
$2.8 billion (gains of 0.99 to losses of 7.69) and $28.8 billion (4–61) in 
losses from the 1998 Indian, 2003 French, 2010 Russian and 2012 North 

American events, respectively. We perform these attributions by apply-
ing the observation-based generalized damage function to specific 
regions and years, a practice consistent with work that estimates how 
individual extreme events affect economic output106 and the wider use 
of deduction in climate attribution49. Although any individual region or 
year will modestly deviate from the generalized response we estimate, 
the approach mathematically approximates their responses on average.

Collectively, these results provide the first estimate of the global 
economic toll that individual fossil fuel companies have produced 
owing to the extreme heat caused by their emissions of carbon dioxide 
and methane.

Clarifying who is responsible
How could end-to-end attribution analyses such as ours be used? Each 
case will differ and depend on the motivation of the litigants and their 
climate context. As presented in Figs. 2 and 3, science can clarify ‘but for’ 
causation at various scales across a class of hazards, such as heatwaves, 
or for a particular event, such as the 1998 Indian heatwave. But it is also 
essential to clarify who is potentially liable. There are many emitters, 
and affected communities may want to know who is most liable for 
impacts they endure—whom do they name as defendant? A nation?  
A company? A collective? A sector? This, too, science can help clarify.

So far, attorneys and litigants have often named defendants as 
part of the initial legal process, under the assumption that knowing 
a defendant’s emissions is sufficient to make a claim. Our analysis 
makes clear, however, that what matters is not simply the magnitude 
of the emissions but also the timescale over which they were released 
and the impact under consideration. Nonlinearities at each step from 
emissions to impacts imply that proportional contributions to global 
warming are not necessarily equivalent to proportional contributions 
to impacts. And yet calculating the contributions of all possible emit-
ters could be costly. Legal work is expensive and time-consuming, and 
the need to retain experts could be a crucial barrier to the low-income 
or underresourced communities who have the greatest claims for 
restitution.

Science can help claimants assess potential defendants in a transpar-
ent and low-cost way. As an example, we present a strategy for assessing 
who is responsible for cumulative losses from extreme heat (Fig. 4). 
Here the analysis asks: “how much extreme heat damage is attributable 
to a given percentage of global emissions?” Our approach is straight-
forward: we repeat our leave-one-out simulations using idealized per-
cent contributions to total 1850–2020 CO2 and CH4 emissions, rather 
than the emissions of any particular company. Such an approach is 
actor-agnostic and scale-agnostic, meaning that it simply presents 
the impacts associated with a given contribution to global emissions 
made over a given time period.

Global losses from extreme heat scale quasilinearly with emissions 
contributions (Fig. 4a). Each extra percentage point contribution to 
total 1850–2020 CO2 and CH4 emissions generates a further $834 billion 
in global economic losses from extreme heat in 1991–2020. Our general-
ized approach enables litigants to consider emitters at various scales 
quickly: any individual or group of emitters can be placed in this contri-
bution–damages space to rapidly assess their attributable impacts. For 
example, the general relationship between contributions and heatwave 
damages can be used to link the top five companies (Fig. 4a, orange) or 
all companies (Fig. 4a, blue) to losses, on the basis of collective emis-
sions. Nations, economic sectors or industries could equally be placed 
in this space to assess contributions to heat-driven losses.

Crucially, these losses depend on the time period over which the 
emissions are counted (Fig. 4b), demonstrating key choices that must 
be made by policymakers, litigants and courts. If accounting begins in 
1990, around the development of the scientific consensus on climate 
change60, heatwave losses attributable to an actor contributing 5% of 
global emissions total $2.5 trillion (90% range: 1.05–4.47), contrasting 
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Fig. 2 | Estimated cumulative economic losses from extreme heat by carbon 
majors. a, Cumulative global heat-driven economic losses linked to the top five 
emitting fossil fuel companies over 1991–2020, in 2020 US dollars ($US2020). 
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with the $4.2 trillion (1.7–7.5) when counting from 1850. However, fos-
sil fuel companies have accurately predicted climate change since the 
1970s110 and have since used their power and profit to cast doubt on 
the relationship between fossil fuels and warming111. If we use the 1977 
date of the first reported successful projection of global warming by 
ExxonMobil110, heatwave losses attributable to an actor contributing 
5% of global emissions total $3.3 trillion (1.4–5.8). These losses are all 
large, with 99% ranges that do not include zero, but they can vary by 
>50% across start dates.

Remaining work and ways forward
By clarifying ‘what’ damages and ‘who’ is responsible, our attribution 
frameworks have flexibility and applicability to many contexts. Extreme 
heat is one of myriad climate impacts and the costs we assess are large. 
As science advances and new hazard models, damage functions and 
climate impacts estimates are developed, such as extreme rainfall105 
or El Niño112, these costs could be incorporated into a fuller account-
ing of climate damages attributable to emitters. Given the flexible, 
open-source nature of RCMs and the maintenance of pre-existing 
pattern-scaling libraries75, such damage estimates can be easily ported 
into our framework to provide a more complete documentation of 
the costs attributable to particular emitters. On the other hand, some 
injuries motivating suits, such as the adaptation costs incurred by a 
municipality for local sea-level rise, could require cost assessment 
approaches that are not only reliant on globally derived damage func-
tions. In those cases, our emitter-based attribution framework can 
potentially provide quantitative estimates of how the hazard has been 
altered by particular emitters, but other mixed-methods approaches 
could be used to connect those estimates to the specific choices facing 

local decision-makers. The framework we advance here is flexible and 
its potential applications are broad.

Performing coordinated, near-real-time, end-to-end attribution 
following events would allow communities to understand the contribu-
tions of individual actors to the losses they suffer. Scientific enterprises 
such as the World Weather Attribution16 could be extended to include 
end-to-end attribution in their workflow or could be a model for a new 
scientific body centred on assessing causation in climate impacts. 
Recent calls to operationalize extreme event attribution for loss and 
damage debates have been motivated by the consensus methods that 
have been developed for event attribution20. And just as event attribu-
tion has moved from a scientific thought experiment to the mainstream 
over the past 20 years, the same could be true of end-to-end attribution. 
A standing scientific body would be an essential resource for courts and 
citizens, providing tailored end-to-end attribution analyses, translation 
and, potentially, expert testimony, responsibly informing the coming 
wave of litigation to ensure claims use the best available science.

A key area for future collaboration among attribution and legal 
scholars concerns shared evidentiary standards. Frequentist statisti-
cal practices common in scientific studies (for example, ‘P < 0.05’) 
may not be appropriate for climate liability cases for several reasons. 
First, they set the bar for evidence higher than legal standards such as 
‘more likely than not’113. Moreover, significance testing can be abused 
and misinterpreted114, its thresholds are generally arbitrary115 and such 
testing provides a poor characterization of uncertainty116. Here we have 
chosen to present the range of outcomes and damage estimates pos-
sible given uncertainties in the causal chain from emissions to impact.

Other scientific approaches in attribution science, such as ‘storylines’, 
could help reconcile epistemic differences between the legal and attri-
bution communities and reduce the need for end-to-end attribution to 
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Fig. 3 | Estimated losses from individual extreme heat events by carbon 
majors. a–d, Average change in regional Tx5d values owing to the emissions of 
the top five emitting carbon majors in 1998 (a), 2003 (b), 2010 (c) and 2012 (d). 
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specific harms in each case. Storylines are a narrative-driven attribution 
approach using conditional assumptions, often about the dynamics 
underpinning an extreme event, to assess the thermodynamic contribu-
tions of global warming. Storylines emphasize deterministic rather than 
probabilistic characterizations of causality117 and thus complement the 
application of our end-to-end attributions of individual events, such 
as floods or tropical cyclones—an area for future work. Our present 
analysis reflects the primacy of ‘but for’ causation in existing legal 
frameworks, but as climate impacts grow and cases advance, the evo-
lution of legal approaches to causation could allow other attribution 
approaches to become sufficient for legal standing118. Complemen-
tary and simultaneous development of several approaches is the most 
effective way for the scientific and legal communities to evaluate the 
growing evidence for climate liability49.

The validity of the scientific case for climate liability does not mean 
that claims will succeed in court. Essential questions remain, such as 
the period over which emissions should be counted. That fossil fuel 
companies have predicted climate change and its consequences for 
decades implies a potential ‘duty of care’ violation, meaning that those 
companies could be liable for emissions occurring before the consen-
sus on climate change emerged119. Research using archival methods120, 
computational frame analysis121 and interviews122 has documented the 
disconnect between the internal and public communications of fossil 
fuel companies. Advances in this area could add credibility to climate 
liability cases. Ultimately, however, accounting and framing choices 
reside beyond the scope of science—they must be made by legal teams 
and decided by judges and juries. Other legal barriers include legislation 
such as the US Clean Air Act, which may displace federal common-law 
claims123, or courts’ perception that these cases inappropriately inter-
vene in policymaking124.

Moreover, despite the harm arising from extreme heat, fossil fuels 
have also produced immense prosperity. We do not assess the economic 
benefits from fossil-fuelled energy, for which these companies have 
already been handsomely paid. Courts may need to consider how the 
benefits of energy use are balanced against its externalities and the 
potential duty of care these companies have to the public119. Recent 
alternatives to litigation, such as ‘polluter pays’ bills that draw on super-
fund and loss and damage logic, are advancing in state legislatures 
around the USA. The first one, passed in Vermont125, suggests that some 

lawmakers see a clear distinction between the benefits and harms of 
fossil fuels and can evaluate them individually. Climate damages are a 
negative externality from fossil fuels not reflected in the current value 
of these companies. This disconnect is particularly strong given that 
these externalities have fallen most severely on the poorest people 
across the globe—those who have benefited least from fossil fuels 
or have been exploited for its extraction126. More broadly, just as the 
benefits of a medication do not absolve a manufacturer who fails to 
warn its customers about side effects, it is clear that the benefits of 
fossil fuel use should not absolve carbon majors of liability for these 
devastating externalities2.

As climate disasters accumulate, courts will see more and more cli-
mate cases. Formalizing communication and education between the 
scientific and judicial communities is vital, ensuring that science is 
useful and that courts recognize its limits. Alongside these efforts, 
new legal theories and the urgent press of climate disaster could spur 
courts to embrace climate liability claims118. The next 20 years will 
bring greater clarity on these remaining questions. Here we provide 
an essential start: the development of a rigorous, flexible, transparent 
and widely applicable end-to-end attribution framework.

Online content
Any methods, including any statements of data availability and Nature 
Research reporting summaries, along with any additional references 
and source data files, are available in the online version of the paper 
at https://doi.org/10.1038/s41586-025-08751-3.
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Methods

Our end-to-end attribution integrates model experiments with three 
steps: (1) emissions to warming; (2) warming to hazards; and (3) haz-
ards to damages. For the first step, we use a RCM, which translates 
emissions into global temperature change, reconciling the carbon 
cycle and climate response uncertainty (see ‘Step 1: FaIR simulations’). 
For the second step, we use a statistical model that translates global 
temperature change into local changes in the hottest five days of the 
year (see ‘Step 2: pattern scaling’). For the last step, we use an empiri-
cal model that estimates the marginal economic damage of the five 
hottest days of the year (see ‘Step 3: damage function’). Different sets 
of emissions data could be included in step 1, other hazard models 
could be ported in at step 2 and other damage models could be used in  
step 3, suggesting the flexibility of the framework.

Step 1: FaIR simulations
We use the FaIR emissions-driven RCM to quantify the contributions 
of individual emitters to GMST change. FaIR takes input time series of 
greenhouse gas emissions and natural climate forcings, simulates the 
carbon cycle and radiative forcing response and calculates resulting 
warming, providing an output time series of GMST. All FaIR simulations 
are run from 1750 to 2020.

For each company, our analysis requires comparing three experi-
ments: in the first experiment, we run FaIR in a ‘natural’ scenario, with 
only naturally occurring historical forcings, such as solar variations 
and volcanic eruptions, preserved. This experiment calculates the time 
series of GMST in a counterfactual world with no human greenhouse 
gas emissions. In the second experiment, we run FaIR in a ‘historical’ 
scenario, inputting both total historical human-caused emissions as 
well as the natural forcings to calculate the GMST we have experienced 
from observed historical forcing. The difference between the ‘historical’ 
and ‘natural’ FaIR simulations provides a time series of the change in 
GMST attributable to historical human-caused emissions and allows us 
to validate the skill of our simulations. Our simulations are skilful, repro-
ducing the experimental results from the Detection and Attribution 
Model Intercomparison Project127 (DAMIP) run with the fully coupled 
Earth system models participating in the sixth phase of the Coupled 
Model Intercomparison Project128 (CMIP6). The IPCC best estimate 
of human-induced warming over 2010–2019 relative to 1850–1900 
is 1.07 °C, with a likely (66%) range of 0.8–1.3 °C (ref. 128). The results 
from our FaIR simulations are consistent with this estimate, with an 
average warming in 2010–2019 relative to 1850–1900 of 1.05 °C and a 
66% range of 0.89–1.23 °C.

Our third experiment is performed for each emitter separately. This 
experiment has the same protocol as the ‘historical’ experiment but 
this time we remove the emissions from a single company from total 
emissions. This ‘leave-one-out’ experiment provides the counterfactual 
time series of GMST in which the chosen company did not emit. The 
difference between the time series of ‘historical’ and ‘leave-one-out’ 
GMST provides a time series of the change in GMST attributable to a 
single emitter.

A ‘leave-one-out’ experimental design does not consider socioeco-
nomic consequences of counterfactual emissions, only thermodynamic 
ones. Thus, our counterfactual approach is agnostic about whether a 
‘leave-one-out’ framing implies that the fossil fuel production itself 
never took place (with opaque and unpredictable market and produc-
tion implications) or whether it is analogous to a scenario in which 
a company instead took steps to mitigate or remove the emissions 
associated with their fossil fuel production.

Each company’s emissions are time series of carbon dioxide and 
methane emissions—representing scope 1 and scope 3 emissions from 
fossil fuel production—drawn from data from the Carbon Majors data-
base100; we use all available years of emissions data for each company. 
We exclude actors from the database that are listed as nation states, 

using only investor-owned companies or state-owned enterprises. 
Not all companies have data spanning the same number of years as 
companies were incorporated at different times, but we use all available 
emissions data to avoid artificially constraining our analysis. Extended 
Data Table 1 shows the years over which emissions data are available for 
the top five emitting companies in our data. Similarly, for the experi-
ments for all 111 companies in our data or the groups of investor-owned/
state-owned companies, we use all available data for each company 
regardless of start date.

To sample carbon cycle and radiative forcing uncertainties, we 
perform each of the above FaIR experiments 1,001 times, providing a 
large, perturbed-parameter ensemble for each experiment. The 1,001 
parameter combinations were developed as part of the IPCC Sixth 
Assessment Report101. Our 1,001-member FaIR parameters are a subset 
of a larger parameter set of 1.5 million, which was then constrained 
to be consistent with fully coupled CMIP6 Earth system models. We 
therefore run 1,001 simulations for the ‘natural’, ‘historical’ and each 
‘leave-one-out’ experiment, sampling each parameter set for each 
company. These simulations provide a distribution of GMST changes 
attributable to each company for each year, in which the range in values 
is attributable to uncertainties in the carbon cycle and the response 
of warming to forcing. These parameter sets were downloaded on 13 
September 2023, with further information available at the following 
URL: https://docs.fairmodel.net/en/latest/examples/calibrated_con-
strained_ensemble.html.

Step 2: pattern scaling
The scale of our damages analysis is the subnational region, equiva-
lent to states in the USA or provinces in Canada. This is the scale at 
which heatwaves have been found to affect economic growth89 (in 
contrast to the country-level approach of previous studies83,84, a finer 
spatial scale is necessary to account for the effect of heatwaves). 
Following previous work, heatwaves are defined here as the five hot-
test days in each year (denoted ‘Tx5d’), although other heat metrics 
could be used.

To quantify the effects of carbon majors’ emissions on local extreme 
heat, it is necessary to link changes in GMST provided by the FaIR simu-
lations to regional changes in Tx5d. Motivated by the strong linear 
relationship between GMST change and local extreme heat78, we use 
pattern scaling to calculate changes in Tx5d in each region as a linear 
function of GMST change. To do this, we use the ‘hist’ and ‘hist-nat’ 
experiments conducted as part of the DAMIP protocol for CMIP6, 
which are the fully coupled analogues to our ‘historical’ and ‘natural’ 
FaIR experiments. For each participating model and each experiment, 
we calculate regional Tx5d. Next, we take the difference between the 
‘hist’ and ‘hist-nat’ experiments in both GMST and regional Tx5d over 
the 1991–2020 period to calculate anthropogenic changes in those 
quantities. We then linearly regress the time series of anthropogenic 
Tx5d change onto the time series of anthropogenic GMST change for 
each region to yield a pattern-scaling coefficient that represents the 
sensitivity of local Tx5d change to GMST change in units of “degree of 
regional Tx5d change per degree of GMST change”. Multiplying these 
coefficients with the company-level sets of FaIR simulations that pro-
vide the GMST change attributable to each emitter yields the Tx5d 
change owing to each carbon major in each subnational region (Fig. 1c). 
We use 1991–2020 as the time period of this analysis to match the time 
period of the damages analysis.

We perform this local pattern-scaling regression separately for 
each of 80 CMIP6 climate model simulations, specifically those that 
have hist and hist-nat simulations available for daily high surface air 
temperature (‘tasmax’) and monthly mean air temperature (‘tas’). 
For CMIP6, eight distinct models are available, but we use as many 
ensemble members for each model as possible. This choice allows us 
to sample uncertainty from both model structure (that is, uncertainty 
across models) and internal climate variability (that is, uncertainty 
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across realizations within an initial-condition ensemble of each model). 
Previous work showed that internal climate variability can form an 
important component of uncertainty in local attributable damages53 
and we explicitly incorporate this uncertainty in the pattern-scaling 
step of our analysis.

The choice to use many ensemble members from a single model 
means that some models are overrepresented in this ensemble but 
ensures that we are sampling pattern-scaling uncertainty owing to 
both model structure and internal climate variability. When we per-
form our final Monte Carlo uncertainty assessment (see ‘Uncertainty 
quantification’), we adjust the model sampling probabilities so that 
models with fewer realizations are equally likely to be sampled as mod-
els with more89.

Step 3: damage function
We use a damage function that relates changes in local Tx5d to changes 
in GDPpc growth (‘economic growth’) in subnational regions. This func-
tion was derived following peer-reviewed methods of ref. 89, using a 
panel regression of observed Tx5d and observed GDPpc growth in a 
global sample of regions over 1979–2016, isolating the causal effect 
of year-to-year changes in extreme heat from other geographic or 
time-trending correlates.

Specifically, we use the coefficients from the following regression 
estimated using ordinary least squares:

g α T α T β β T γ V γ V A

P μ δ ε

= + + Tx + ( Tx × ) + + ( × )

+ π + + +
(1)it it it it it it it it i

it i t it

1 2
2

1 2 1 2

where g refers to economic growth in region i and year t, T refers to 
annual mean temperature, Tx refers to Tx5d, V refers to temperature 
variability, A refers to annual cycle of temperature, P refers to tempera-
ture, μi is a region fixed effect that removes all time-invariant regional 
average characteristics and δt is a year fixed effect that removes all 
global shocks that are common to a given year. The coefficients of 
interest are β1, which denotes the effect of Tx5d when the mean tem-
perature is 0, and β2, which denotes the change in the effect of Tx5d as 
the mean temperature increases. Marginal effects of Tx5d are shown 
in Fig. 1d. We include the terms for temperature variability (V) and 
the annual cycle (A) following ref. 129. Specifically, they allow us to 
distinguish the impacts of temperature extremes from the impacts 
of within-year temperature variability, which may be independently  
damaging.

The estimated effects of Tx5d on economic growth are spatially het-
erogeneous, with negative effects of extreme heat in warm regions 
(regions with annual mean temperature above about 14 °C) but negli-
gible or positive effects in cool regions. The disproportionate negative 
effect of marginal changes in Tx5d in warm tropical regions could occur 
as a result of both their underlying warmth, which may place them 
closer to physiological thresholds for human health or agriculture, 
as well as the lower income in tropical regions, which may make them 
more economically vulnerable to climate stress. Uncertainty in these 
subnational damage function coefficients is estimated by bootstrap 
resampling the regression, producing a distribution of 1,000 coef-
ficients that reflects sampling uncertainty in our estimates.

Tx5d is only one of the many ways to measure extreme heat130. Other 
metrics based on the temperature of hot periods include the hottest 
day131, hottest seven days132 or hottest month6. In previous work89, we 
showed that all of these measures have broadly similar damage func-
tions, but that Tx5d has the clearest economic effect among them, 
potentially because it is the best geophysical measure of the synoptic 
timescale of most heat events.

An alternative approach is to define location-specific or time-specific 
thresholds, above which heat is termed ‘extreme’ and can be accumu-
lated over time, similar to the ‘degree day’ metrics used in many agri-
cultural applications. In the climate-economic context, an example of 

this is ref. 106, in which the authors use cumulative measures of extreme 
heat above a threshold to examine economic impacts of historical 
heatwaves. Such cumulative metrics have the advantage of incorpo-
rating several heat events over the course of a year and the varying 
duration of those events. On the other hand, they require researchers 
to make several arbitrary choices: what threshold is chosen, whether 
that threshold is relative to a day of year, month or season, whether 
extreme heat has equivalent effects in spring or fall as in summer and 
so on. We believe that the simplicity and transparency of our approach 
has advantages in this emerging legal context. More complex metrics 
of extreme heat or other events are a fruitful target for future research. 
Because our framework is flexible and modular, it can accommodate 
more complex or tailored metrics of heat, other extremes and other 
hazards as needed.

To assess heat-driven damage attributable to individual emitters, 
we integrate the three steps outlined above, calculating economic 
changes in the ‘historical’ and ‘leave-one-out’ scenarios for each com-
pany, relative to the ‘natural’ scenario, which only includes solar and 
volcanic forcing. We perform the following:
1.	 First, we calculate the change in each region’s Tx5d values owing to 

the difference in Tx5d between the pattern-scaled FaIR ‘historical’ 
(or ‘leave-one-out’) simulation and the pattern-scaled FaIR ‘natural’ 
simulation. This difference is then subtracted from the observed, 
real-world time series of Tx5d for each region, providing counter-
factual subnational annual-scale time series of Tx5d. This common 
‘delta method’ ensures that the Tx5d differences are benchmarked 
to the observed climate, both to bias-correct the model predictions 
and to impute realistic timing to interannual variability.

2.	The difference between observed and counterfactual Tx5d is then 
multiplied by the damage function coefficients to calculate a change 
in each region’s economic growth, owing to the change in Tx5d bet
ween the ‘natural’ and ‘historical’ or ‘leave-one-out’ experiments.

3.	We then add this difference in economic growth to observed eco-
nomic growth. This provides a counterfactual trajectory of economic 
growth consistent with the included emissions. Higher counterfac-
tual economic growth values than those observed in the real world 
implies damages from emitter-driven Tx5d changes—that is, a region 
would have grown faster but for the effect of the extreme heat attri
butable to the included emissions.

4.	We then put these economic changes in dollar terms by taking these 
counterfactual economic growth time series from each emitter and 
reintegrating each region’s GDPpc time series. Further details on this 
procedure are available in refs. 88,89. We now have, for each region, 
a time series of per capita GDP damages in the historical world and 
a time series of per capita GDP damages in a world with one emitter 
removed.

5.	 Finally, we take the difference between the historical damage esti-
mate and the leave-one-out damage estimate to calculate the contri-
butions of individual companies. Further details on this procedure 
are available in ref. 53.

The effect of extreme heat on economic growth is not permanent. 
In previous work89, we observed a rebound effect in which economic 
growth accelerates in the years following heatwaves—for example, 
as crops are resown or people return to work. From a distributed lag 
model based on equation (1), in which we add lags of each term to assess 
their effect over time, we find that this effect seems to last 3 years. 
Neglecting such a rebound effect could lead to overestimates of the 
effect of heatwaves on long-term growth. We therefore account for 
this recovery in our damage estimates, allowing Tx5d changes to affect 
both contemporary and future economic growth such that no single 
heatwave has a permanent effect.

Furthermore, because changes in annual mean temperature mod-
erate the effect of Tx5d change, we perform a similar pattern-scaling 
analysis with regional annual mean temperature. Following previous 
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work, the final damages calculations incorporate both changes in Tx5d 
itself as well as changes in the underlying annual mean temperature 
values that moderate the effect of Tx5d (ref. 89).

Predicting regional income
Our analysis requires continuous GDPpc time series order to inte-
grate counterfactual economic growth and calculate counterfactual 
income. Many regions around the world, especially those in the poor-
est and warmest areas of the tropics—those that are most strongly 
affected by extreme heat—do not have such subnational data available, 
making it difficult to assess the impacts of climate change in those 
regions. To fill this gap, we extend the regional GDPpc prediction 
procedure outlined in ref. 89 to predict subnational GDPpc from the 
period 1991–2020.

This procedure takes three inputs: country-level GDPpc data from 
the World Bank World Development Indicators, gridded nighttime 
luminosity data from satellites and subnational GDPpc (from the 
regions in which such data are available) from the MCC-PIK Data-
base Of Sub-national Economic Output (DOSE) dataset collected 
by Wenz et al.133. We estimate a multiple regression model in which 
observed regional GDPpc is regressed on the corresponding coun-
try’s GDPpc, regional average nighttime luminosity and their inter-
action134. (To perform this procedure over the period 1991–2020, 
we linearly extrapolate regional nightlights beyond their original 
1992–2013 time boundaries). This regression model skilfully explains 
variation in regional GDPpc, with an R2 of approximately 0.9, and has 
performed well in out-of-sample cross-validation tests89. We then 
predict regional GDPpc in the regions in which it is not available, using 
the country-level GDPpc and nightlights data in these regions. There 
are some countries for which the relationship between national and 
regional GDPpc seems abnormal, specifically Uzbekistan and Kenya, 
so we drop these countries from the final data construction (see Sup-
plementary Fig. 8 of ref. 89). In other countries, such as Afghanistan, 
even country-level GDPpc data are not continuously available across 
the 1991–2020 analysis time period. In both cases, white regions in 
Fig. 2 show the areas for which GDPpc data are not available in the 
final analysis.

We use the US GDP Deflator to correct for inflation and convert each 
dollar to 2020-equivalent dollars.

This procedure inherently introduces uncertainty in our final esti-
mates and we sample this uncertainty in two ways following ref. 89. 
First, we bootstrap the multiple regression model 250 times, resa-
mpling by country with replacement to account for within-country 
autocorrelation in growth. Second, in each bootstrap iteration, we add 
random noise to the predictions with amplitude equal to the standard 
deviation of the estimation model’s residuals. This procedure ensures 
that the uncertainty from this prediction procedure is reflected in our 
final damage estimates.

We emphasize that we do not use these GDPpc reconstructions in 
the original regression estimates that produce the damage function, 
only in the process of calculating absolute GDPpc losses from changes 
in economic growth.

Event-specific estimates
To quantify the influence of carbon majors on damages from specific 
events, we use a similar method as in our main analysis. The key differ-
ence is that we only calculate the damages from the change in Tx5d and 
average temperature in the year of the event. In practice, this means that 
we set the Tx5d and average temperature values in the leave-one-out 
simulation equal to the observed values in all years, except the year 
of the event. For example, we calculate damages for India in 1998 by 
setting the historical and leave-one-out Tx5d and temperature values 
to be exactly the same as the observed values, except for in 1998. We 
then repeat our damage calculation, with damages only being pro-
duced by the climate change in 1998 and not any other year. We also 

note that these heatwaves happen to coincide with the Tx5d in each 
case we present. We would not always expect that to be the case, as 
damaging heatwaves may not always include the five hottest days 
of the year. Indeed, even in the cases we present, five days may not 
encompass the full duration of the heatwave; for example, the 2010 
Russian heatwave occurred over several weeks in July. However, previ-
ous analysis showed that extending the time window of the analysis, 
such as using the hottest 15 days instead of the hottest five, yields very 
similar answers89. Other heat metrics or approaches may be appro-
priate for other events that do not occur during the hottest parts of  
the year.

As described above, heatwaves produce an economic rebound in the 
years following the event. Thus, we continue to account for the economic 
recovery in these single-event estimates by allowing Tx5d changes to 
affect growth in the year of the event, as well as the 2 years following it. 
When we present country-level damage estimates for these individual 
events, we sum damages across all regions in the chosen country for 
that year and the 2 years following. For example, for India in 1998, the 
damage estimates presented in Fig. 3 represent losses in 1998, 1999 and 
2000, induced by the 1998 heatwave, before India catches back up to its 
original economic trajectory in 2001 and damages are zero thereafter. 
For the USA in 2012, we exclude Hawaii and Alaska from this calculation, 
to calculate damages only for the contiguous states of the USA.

Uncertainty quantification
Our damage calculations reflect uncertainty from the FaIR simulations, 
pattern scaling, damage function estimates and regional income predic-
tion. To propagate these uncertainties into our final estimates, we use a 
Monte Carlo approach, sampling uncertainty with 10,000 iterations. In 
each iteration, we sample one of the 1,001 FaIR simulations, one of the 
80 climate model estimates of the pattern-scaling coefficients (keeping 
all regional coefficients together from a single climate model), one of 
the 1,000 damage functions from the bootstrap estimate and one of 
the 250 regional GDPpc predictions.
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Perspective

Extended Data Fig. 1 | Damages when annual average temperatures are  
held at their observed values. As in Fig. 2a but when emissions only affect the 
intensity of Tx5d values and not the annual average temperatures that moderate 

the effect of Tx5d. Map was generated using cartopy v0.17.0 and regional 
borders come from the Database of Global Administrative Areas.



Extended Data Table 1 | Availability of emissions data for the top five companies

This table shows the name (first column), country of headquarters (second column), first year of available emissions data (third column) and last year of available emissions data (fourth column) 
for the top five emitting companies in our data. Data are from the Carbon Majors database100, based on work in ref. 62.
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