

Chair Lawrence, Chair Sachs and fellow ratepayers at the EUT Committee

I oppose LD 2112 An Act to Authorize Municipalities to Form Community Choice Aggregation Programs to Procure Electricity

It is more than apparently noticeable that there are many Requests for Approval for license to operate as a competitive electricity provider(CEP) on the Maine PUC dockets, so. this bill begs the question: are these rash of CEPs the new up and coming lobby that has got the ear of our legislators?

I wonder if they are piggybacking on the success of Net Energy Billing projects which scrambled their resourceful sales force into municipal halls to offer 15% savings for subscribing to solar projects thus enabling them to obtain the other 85% of the revenue granted by NEB laws, also known as "revenue by ratepayers"

I am not going to cry foul on this, but there is a smell to it that is not too sweet.

Do you think municipalities will be targeted by these "aggregators", whoever they are, delivering enticing but vague sale pitches? The history of competitive electricity providers promising something and not delivering is on record at the Maine PUC. This bill interchanges aggregator with competitive electricity provider *"An aggregator that supplies electricity is considered a competitive electricity provider under section 3203 for the purpose of access to the electric distribution utility's load data and for the purpose of ceasing operations."*

Does this bill recognize how "gullible" and/ or "trusting" and/or "uninformed", people are when offered savings which are underwritten by the ratepayers themselves, which more often than not, it is never disclosed by the aggregators nor the authors of legislative bills that the abundance of money goes into the hands of the conglomerates, billionaire class and wall street investment firms?

Here is the Chairman of the Maine Public Utilities Commission talking about the January 2026 hike in the Standard Offer : "It might be the lowest price that's out there, but it could still be high," Bartlett said. There are other competitive electricity providers that consumers can pick from, but nearly all are more expensive than the standard offer."

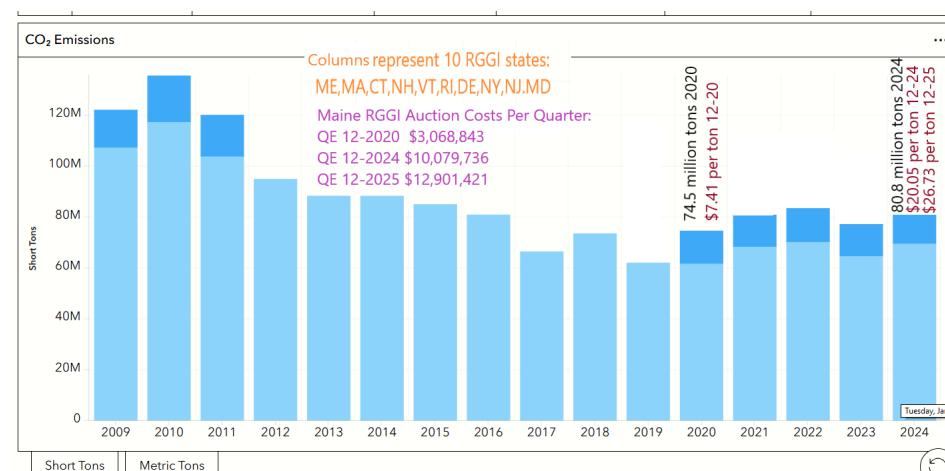
Why is it that the sponsors of this bill never disclose the impacts of all the previous legislation that has severely caused the supply price of electricity to soar out of the control of the Standard Offer Providers, the T&D utilities and the impoverished ratepayers. Even the Public Advocate is no more than an overwhelmed figurehead. It surely can't be that anyone thinks these CEPs are the solution to high electricity costs, so what is the purpose of sneaking them through the back door of municipalities?

For those who would endorse this bill, you should worry about how the people will react when they find their electric bills will still be going up and, even more disgracefully, they have been opted-in to another legislative mandated scheme.

RGGI and RECs

1. RGGI

ISO-NE Takeaways 2023-2024 "2024 Annual Report"


pg 91 *"Typically, increases in energy prices in New England are driven primarily by higher natural gas prices. However, this was not the main driver in 2024; natural gas prices were effectively unchanged, on average, from their 2023 levels. One key driver of this change in energy prices was emissions costs. As discussed in Section 1.2, the cost of CO2 emissions allowances increased in 2024, raising the cost to produce energy with fossil fuel-fired generators. In addition, reduced levels of low-cost imports from Canada throughout the year, along with hot temperatures and stressed system conditions in the summer, contributed to the increase in average prices."*

Section 1.2 Carbon allowance costs also made up a larger share of total fossil fuel generation costs compared to prior years, driven by rising prices under the **Regional Greenhouse Gas Initiative (RGGI)**. CO₂ costs represented a significant portion of production costs—ranging from 11% for oil-fired generation to approximately 30% for natural gas generation. CO₂ emissions costs were therefore a notable driver of energy prices; We estimate that carbon programs contributed approximately \$8/MWh to the average annual load-weighted energy price and added about **\$910 million** to total energy costs.

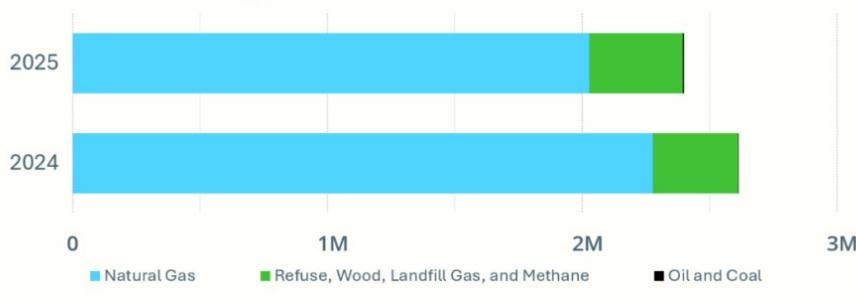
Energy costs accounted for over half (55%) of wholesale electricity costs in 2024. Total energy costs of **\$5.6 billion** increased 24% from 2023

Additional \$910 million dollars on wholesale supply costs while CO2 emissions increase.

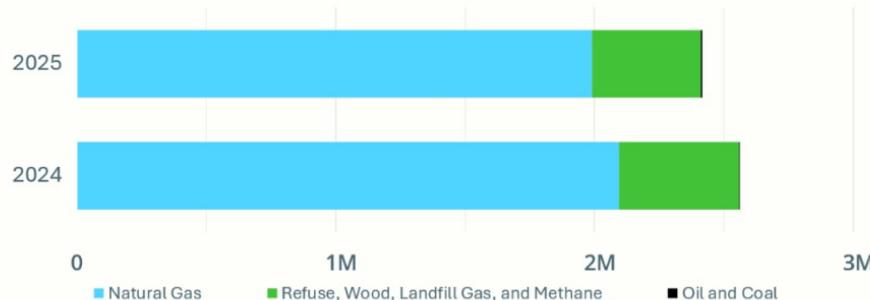
Graph From RGGI Website:



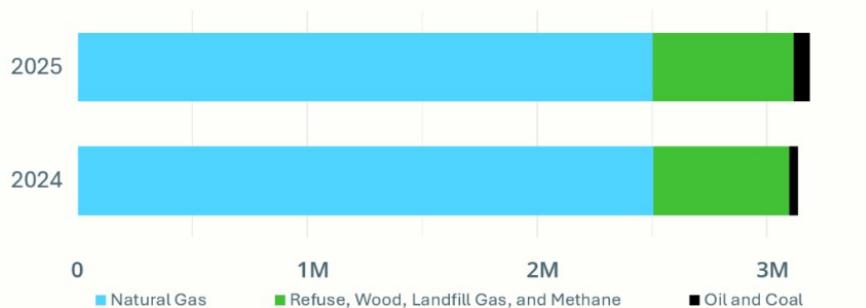
Graphs from ISO-NE Monthly Market Reports, December 2024 to November 2025


November estimated CO₂ emissions in New England, by fuel source (metric tons)

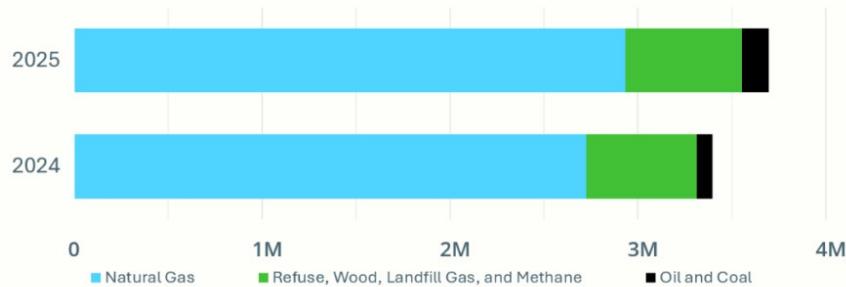
Estimated CO₂ emissions from **natural gas**, **landfill gas**, **wood**, and **oil** increased year over year, while emissions from **refuse**, **methane** and **coal** decreased.


October estimated CO₂ emissions in New England, by fuel source (metric tons)

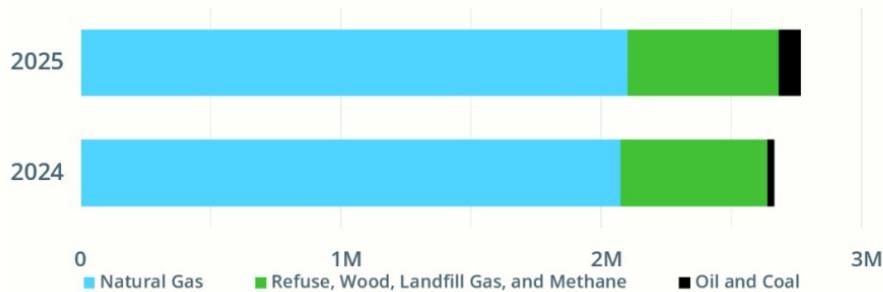
Estimated CO₂ emissions from **landfill gas**, **wood**, **oil** and **coal** increased year over year, while emissions from **natural gas**, **refuse**, and **methane** decreased.


September estimated CO₂ emissions in New England, by fuel source (metric tons)

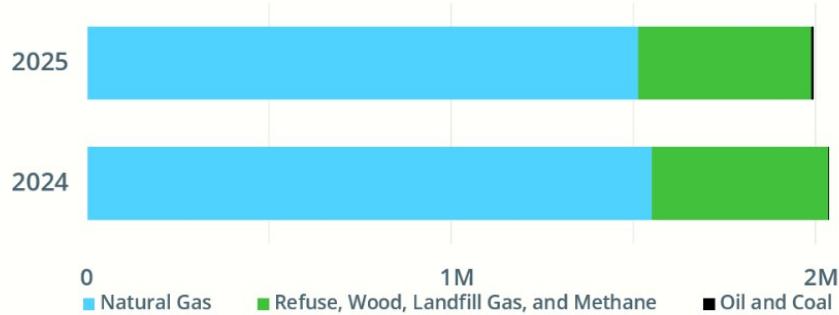
Estimated CO₂ emissions from **oil** and **coal** increased year over year, while emissions from **natural gas**, **refuse**, **wood**, **landfill gas** and **methane** decreased.


August estimated CO₂ emissions in New England, by fuel source (metric tons)

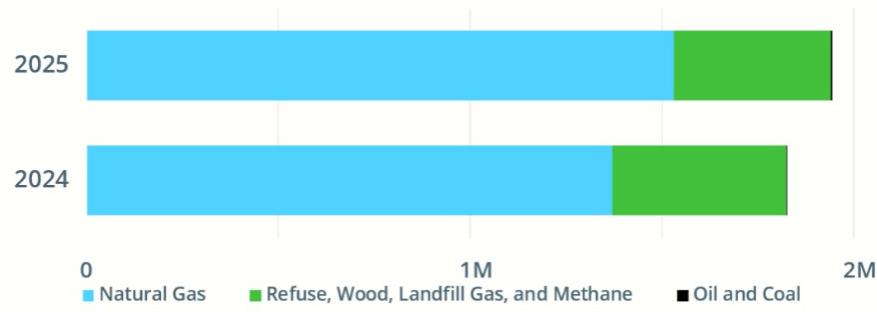
Estimated CO₂ emissions from **refuse, wood, oil** and **coal** increased year over year, while emissions from **natural gas, landfill gas, and methane** decreased.


July estimated CO₂ emissions in New England, by fuel source (metric tons)

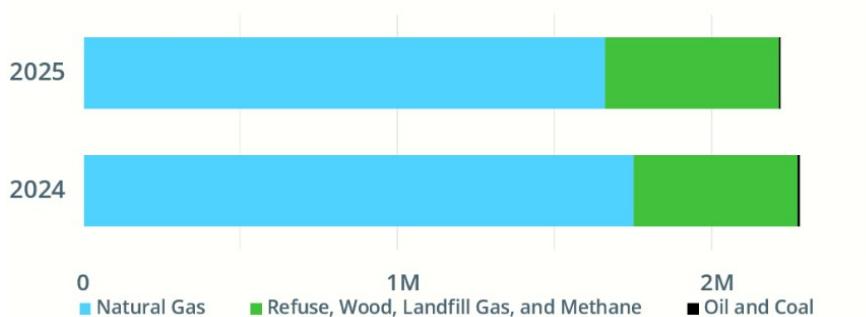
Estimated CO₂ emissions from **natural gas, wood, oil** and **coal** increased year over year, while emissions from **landfill gas, refuse, and methane** decreased.


June estimated CO₂ emissions in New England, by fuel source (metric tons)

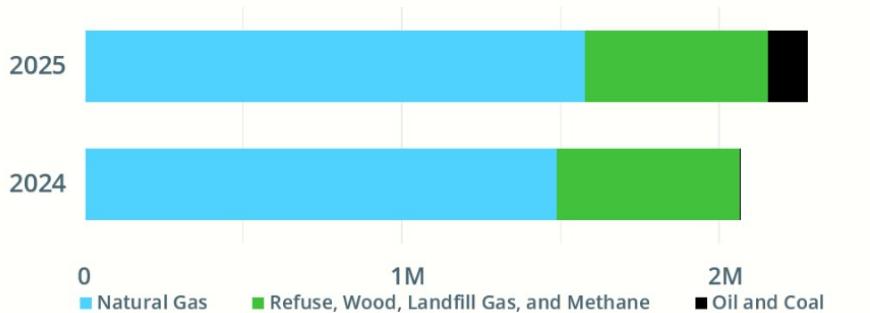
Estimated CO₂ emissions from **natural gas, wood, refuse, oil** and **coal** increased year over year, while emissions from **landfill gas** and **methane** decreased.


May estimated CO₂ emissions in New England, by fuel source (metric tons)

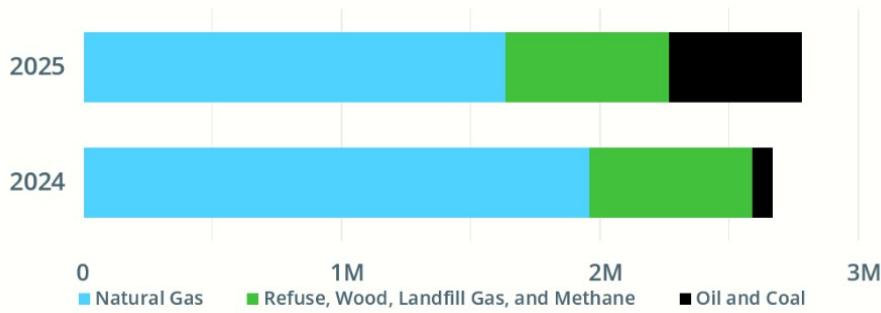
Estimated CO₂ emissions from **wood** and **oil** increased year over year, while emissions from **natural gas**, **coal**, **landfill gas**, **methane** and **refuse** decreased.


April estimated CO₂ emissions in New England, by fuel source (metric tons)

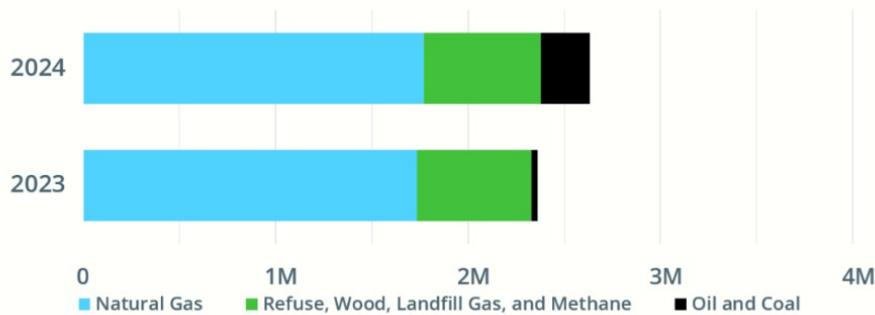
Estimated CO₂ emissions from **natural gas**, **wood**, **oil** and **coal** increased year over year, while emissions from **landfill gas**, **methane** and **refuse** decreased.


March estimated CO₂ emissions in New England, by fuel source (metric tons)

Estimated CO₂ emissions from **wood**, **refuse** and **oil** increased year over year, while emissions from **natural gas**, **landfill gas**, **methane** and **coal** decreased.


February estimated CO₂ emissions in New England, by fuel source (metric tons)

Estimated CO₂ emissions from **natural gas, wood, oil and coal** increased year over year, while emissions from **refuse, landfill gas, and methane** decreased.


January estimated CO₂ emissions in New England, by fuel source (metric tons)

Estimated CO₂ emissions from **natural gas, refuse, landfill gas, and methane** decreased year over year, while emissions from **wood, oil and coal** increased.

December estimated CO₂ emissions in New England, by fuel source (metric tons)

Estimated CO₂ emissions from **natural gas, wood, oil and coal** increased year over year, while emissions from **refuse, landfill gas, and methane** decreased.

2.RECs

Standard offer providers (SOP) as well as the more expensive competitive electricity suppliers (CES) are

obligated to provide Maine with a portfolio that is 65% renewables. Obviously depending on mostly wind and solar to provide 65% of Maine's electricity would mean mass blackouts, especially this time of year. Fortunately, Maine Electricity Supply, as of 2023, uses less than 2% solar and wind in achieving the 65% portfolio

requirements.(Maine PUC "Annual Report on New Renewable Resource Portfolio Requirement Report for 2023 Activity"). Maine relies on biomass and hydro power for most of the RPS compliance, which comes from mostly homegrown projects. Maine sited wind plants supplied 15,181 RECs for Maine RPS compliance. Wind plants in Maine generated an estimated 3,518,000 RECs(a mere 0.4% of these RECs stayed in Maine). Community Solar Plants in Maine supplied 58,045 RECs for Maine RPS compliance. Community Solar Plants in Maine generated an estimated 210,000 RECs (27.6% of these RECs stayed in Maine). As the RPS advances forward to 100% renewables, solar and wind amounts will increase as no new biomass and/or hydro power projects are contemplated. This will also mean competition for RECs and concurrently higher prices will be awaiting the SOP and CEPs servicing Maine going forward. Maine is giving away its land to solar and wind projects to satisfy other State RPS, and the money falls into the hands of large corporations, investment firms and Chinese manufacturing.

Essentially, Maine is headed for 2 markets supplying its power loads.

1.The ISO-NE wholesale market that buys generation on resource neutrality terms where reliability remains the main mission. 2. A RPS-driven market that buys paper certificates and passes the costs onto ratepayers, allowing these developments to underbid reliable generators on the wholesale market and distort market processes so that any

suppression to stack prices are materially offset with "balancing resources" paid to be ready to increase generation. These two markets are becoming more and more at odds with each other and the ratepayer is paying for it and will for a long time if current State Policies remain in place.

So, the SOP and CES, the companies charging what we pay on the supply portion of bills must **Somehow buy 65% renewables** and that is done by buying paper certificates from renewable generators which can be as much as 5 cents per kilowatt hour each. At the same time, SOP and CES must purchase enough reliable power from the New England wholesale market, a market dominated by the large consuming Southern New England States, to assure there is adequate power to keep the lights on in Maine.

Isn't it rather perverse that Maine people must pay for useless paper to have electricity delivered to their homes at unaffordable costs and as a further slap in the face, Maine people must pay exceedingly high RGGI costs while CO2 emissions increase from the necessity of "Balancing Resources".

The Maine PUC reports on the Standard Offer Increase, January 2026:

Why does the Maine PUC keep telling people that Standard Offer costs are solely tied to natural gas costs?

Here the PUC tells Legislators on the EUT Committee that a new program initiated by ISO-NE will increase Standard Offer Prices:

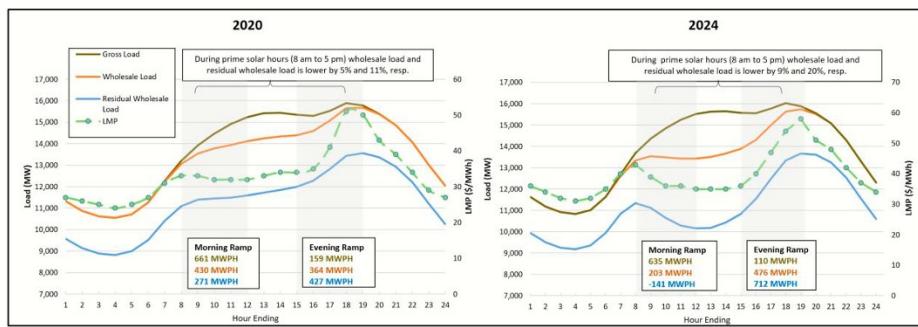
"Suppliers indicated that certain ISO-NE program costs increase risks as the costs are highly variable, uncertain and are not costs that can be easily hedged. For example, ISO-NE introduced a new program, Day-Ahead Ancillary Services Initiative (DAAS or DASI), in March of 2025."

Why not tell us why DAAS and DASI are needed? Here is an explanation uncovered from the internet:

"The new day-ahead ancillary services (DA A/S) market design will directly improve the ability of system operators and generation owners to respond to the system's sudden energy shortfalls by dispatching fast-ramping, reserve-capable resources. This phenomenon will occur more often as more intermittent resources supply energy needs and unexpected spikes in...."

And here is the PUC telling the EUT Committee that Net Energy Billing is another culprit raising costs:

"Suppliers Paid for Load Served (pass-through of NEB risk) Suppliers indicated that they include a risk premium associated with the Net Energy Billing (NEB) kilowatt-hour (kWh) credit program. Their risk comes from an imbalance between load obligation and billed load resulting from the load settlement process."


Other Considerations of Electricity Supply Costs from the ISO-NE "2024 Annual Markets Report"

Pg. 35- "The EIA forecasts increasing gas prices over the next few years, with Henry hub natural gas price projections at \$3.10/MMBtu in 2025 and \$4.00/MMBtu in 2026.24 Demand growth, primarily driven by LNG exports, is expected to outpace supply growth. Future New England prices will likely continue to reflect both hub prices and winter pipeline constraints, with increasing emission prices further contributing to gas generation costs."

Pg.49- "Load Profiles and Ramps are Changing: While the overall impact of additional intermittent resources has been relatively small at an annual and seasonal average level, the time-of-day impacts are demonstrably more

pronounced. BTM solar generation has significantly altered hourly load profiles, reducing morning wholesale load ramps while steepening evening ramps. Between 2020 and 2024, the evening ramp in residual wholesale load increased from 427 MW per hour to 712 MW per hour. Real-time energy prices now rise earlier in the morning, dip mid-morning with increased solar production, and climb sharply during the evening ramp as more expensive generation is dispatched to meet higher load levels."

Figure 1-16: Hourly Real-Time LMP and Demand Profiles, 2020 vs. 2024

There is a substantial change in the hourly load profiles, with BTM solar moderating wholesale load ramps in the morning and increasing evening load ramps. In particular, the impact on morning and evening ramps has grown; for example, the ramp in "residual wholesale load" during the evening hours has increased from 427 MW per hours to 712 MW per hour between 2020 and 2024.

Clayton McKay Dixfield

