

Introduction to Groundwater Resources

Ryan Gordon, Hydrogeologist, Maine Geological Survey

Commission To Study the Role of Water, Sept. 12, 2022

Main Topics

- 1. The water cycle in Maine
- 2. Human groundwater use
- 3. Distribution of water resources
- 4. Effects of human activities
- 5. Future challenges

Outline of Main Points

- 1. Groundwater in Maine is an abundant, renewable resource.
- 2. Human groundwater use is a very small component of the overall water budget.
- 3. Usable water is not evenly distributed across the landscape.
- 4. The effects of pumping wells are localized.
- 5. Groundwater levels in Maine are stable through time.

The Hydrologic Cycle

... begins with precipitation.

The source of all water in Maine

30-yr Normal Precipitation: Annual Period: 1981-2010

Maine Average: 45 inches/year

For areas of fractured rock with little cover, infiltration ~2-5%

Groundwater flow

RECHARGE AREA

Groundwater is:

- Water that fell as precipitation, that is being stored in the earth for some time, and is on its way to somewhere else.
- A renewable resource.

Groundwater in Maine is not:

- From faraway places
- An underground river or lake
- A "fossil" resource

Maine Water Facts

- How much water are we talking about?
- How much do humans use?

Let's talk about volume.

How Much Water? Moosehead is Maine's largest lake (118 square miles)

How many gallons are in the top inch of this lake?

Maine Water Facts

- Average annual rainfall: 45 inches per year
 = 26 trillion gallons
- Run-off: (50% of precipitation)
 = 13 trillion gallons
- Evaporation/transpiration: (35%)
 = 9 trillion gallons
- Infiltration to groundwater ("recharge"): (15%)
 = 4 trillion gallons

Humans in the Water Cycle

Out of Maine's 26 trillion gallons of annual precipitation, total human use is 141 billion gallons (0.6%).

Out of Maine's 4 trillion gallons of groundwater recharge, human use is 32 billion gallons (<1%)

Maine's Annual Water Use

Example uses (both GW and SW):

- Industrial 66 billion gallons
- Domestic 24 billion gallons
- Aquaculture 20 billion gallons
- Irrigation 7 billion gallons
- Bottled water 1 billion gallons

Human Groundwater Use

Human groundwater use per year: = 32 billion gallons = <1% of total recharge

- Private domestic wells: 12 billion gallons
- Public water supplies: 10 billion gallons
- Aquaculture: 4 billion gallons
- Industrial and mining: 3 billion gallons
- Crops and livestock: 2 billion gallons
- Bottled water: 1 billion gallons (3% of human use)

2015 values, from USGS Circular 1441

Aquifers in Maine

Groundwater storage and distribution in the State

Groundwater storage in the earth

An aquifer is:

 A subsurface material (sediment or rock) that has enough connected pore space to transmit "useable" amounts of water to a well or spring

Aquifers in Maine

scale bar = 1-5 miles

Typical Western US aquifer

22

This does not occur in Maine!!

Bedrock aquifers

- Metamorphic and igneous bedrock
- Underly all of New England
- Water flows through discrete, thin fractures

The frequency of fractures generally decreases with depth.

Surficial aquifers

- Sediment (sand, gravel, silt)
- Lies on top of bedrock in some locations
- Water flows in spaces between grains

Sand and gravel deposits are the best resources for high-yield wells, but their distribution is limited.

Sand and Gravel Aquifer Distribution

Distribution confined to:

- Stream valleys
- Glacial esker ridges
- Glacial fans, deltas, and outwash plains

Groundwater Extraction

How do humans affect groundwater flow by pumping from wells?

Typical wells in Maine

Maine Geological Survey

Effect of well pumping

Removing water from an aquifer can:

- Lower the water table in an area near the well
- Change the direction of groundwater flow
- Reduce the discharge of groundwater into streams or wetlands

Effects in Maine are generally small and localized (usually hundreds of feet).

Example cone of depression in esker (Rumford)

Statewide water levels

Groundwater levels in Maine are steady.

Annual cycle of recharge and recession

Long term record in Sanford sand plain

Depth to water level, ft below land surface, ft

High Plains and California: Groundwater mining

Maine: Stable groundwater levels

Future Challenges

Climate change

- Increasing temperatures
- Increasing precipitation (on average)
- More climate variability
 - more short-term droughts
 - higher intensity rainfall events
- Sea-level rise
 - saltwater intrusion into coastal aquifers

Other human activity

- Sprawl and residential development
 - pesticides and nutrients
 - well conflicts
- Increasing road transportation
 - deicing salt, petroleum products, metals, microplastics, etc.

Summary

- 1. Groundwater in Maine is an abundant, renewable resource.
- 2. Human groundwater use is a very small component of the overall water budget.
- 3. Sand and gravel deposits are Maine's highestyielding aquifers, but are not evenly distributed.
- 4. The effects of pumping wells are localized.
- 5. Groundwater levels in Maine are stable through time.
- 6. There will be challenges in the future.

Questions?

Ryan P. Gordon Hydrogeologist ryan.gordon@maine.gov

